Weak phases production and heat generation control fault friction during seismic slip.

Published

Journal Article

The triggering and magnitude of earthquakes is determined by the friction evolution along faults. Experimental results have revealed a drastic decrease of the friction coefficient for velocities close to the maximum seismic one, independently of the material studied. Due to the extreme loading conditions during seismic slip, many competing physical phenomena occur (like mineral decomposition, nanoparticle lubrication, melting among others) that are typically thermal in origin and are changing the nature of the material. Here we show that a large set of experimental data for different rocks can be described by such thermally-activated mechanisms, combined with the production of weak phases. By taking into account the energy balance of all processes during fault movement, we present a framework that reconciles the data, and is capable of explaining the frictional behavior of faults, across the full range of slip velocities (10-9 to 10 m/s).

Full Text

Duke Authors

Cited Authors

  • Rattez, H; Veveakis, M

Published Date

  • January 17, 2020

Published In

Volume / Issue

  • 11 / 1

Start / End Page

  • 350 -

PubMed ID

  • 31953398

Pubmed Central ID

  • 31953398

Electronic International Standard Serial Number (EISSN)

  • 2041-1723

International Standard Serial Number (ISSN)

  • 2041-1723

Digital Object Identifier (DOI)

  • 10.1038/s41467-019-14252-5

Language

  • eng