Using low-cost sensors to quantify the effects of air filtration on indoor and personal exposure relevant PM2.5 concentrations in Beijing, China

Published

Journal Article

© Taiwan Association for Aerosol Research. Residents of polluted cities frequently use indoor air purifiers in an attempt to improve their health by reducing their exposure to air pollutants, despite the fact that few studies have assessed these devices under relevant field conditions. Low-cost air monitors are increasingly popular for monitoring air pollution exposure; however, they must be calibrated and evaluated in their deployment location first to ensure measurement accuracy and precision. In this study, we developed a 2-step calibration method in which a low-cost monitor is calibrated against a reference analyzer and is then used to calibrate other monitors, shortening the required calibration time and reducing measurement error. The monitors in our experiment measured indoor, outdoor, and personal exposure PM2.5 concentrations during 1 week each of true and sham filtration in 7 homes in Beijing, China. On average, filtration reduced the indoor and personal exposure relevant concentrations by 72% (std. err. = 7%) and 28% (std. err. = 5%), respectively. This study indicates that minimizing personal exposure, however, also requires reducing the infiltration of outdoor air in homes or decreasing PM2.5 pollution at the city or country level.

Full Text

Duke Authors

Cited Authors

  • Barkjohn, KK; Bergin, MH; Norris, C; Schauer, JJ; Zhang, Y; Black, M; Hu, M; Zhang, J

Published Date

  • February 1, 2020

Published In

Volume / Issue

  • 20 / 2

Start / End Page

  • 297 - 313

Electronic International Standard Serial Number (EISSN)

  • 2071-1409

International Standard Serial Number (ISSN)

  • 1680-8584

Digital Object Identifier (DOI)

  • 10.4209/aaqr.2018.11.0394

Citation Source

  • Scopus