Kinetically assembled binary nanoparticle networks.

Published

Journal Article

Embedding percolating networks of nanoparticles (NPs) within polymers is a promising approach for mechanically reinforcing polymers and for introducing novel electronic, transport, and catalytic properties into otherwise inert polymers. While such networks may be obtained through kinetic assembly of unary system of NPs, the ensuing structures exhibit limited morphologies. Here, we investigate the possibility of increasing the diversity of NP networks through kinetic assembly of multiple species of NPs. Using lattice Monte Carlo simulations we show that networks obtained from co-assembly of two NP species of different sizes exhibit significantly more diverse morphology than those assembled from a single species. In particular, we achieved considerable variations in the particle spatial distribution, proportions of intra- and interspecies contacts, fractal dimension, and pore sizes of the networks by simply modulating the stoichiometry of the two species and their intra and inter-species affinities. We classified these distinct morphologies into "integrated", "coated", "leaved", and "blocked" phases, and provide relevant phase diagrams for achieving them. Our findings are relevant to controlled and predictable assembly of particle networks for creating multifunctional composites with improved properties.

Full Text

Duke Authors

Cited Authors

  • Wang, J; Lee, BH-J; Arya, G

Published Date

  • February 2020

Published In

Volume / Issue

  • 12 / 8

Start / End Page

  • 5091 - 5102

PubMed ID

  • 32068755

Pubmed Central ID

  • 32068755

Electronic International Standard Serial Number (EISSN)

  • 2040-3372

International Standard Serial Number (ISSN)

  • 2040-3364

Digital Object Identifier (DOI)

  • 10.1039/c9nr09900j

Language

  • eng