Skip to main content

Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells.

Publication ,  Journal Article
Stefan, E; Wiesner, B; Baillie, GS; Mollajew, R; Henn, V; Lorenz, D; Furkert, J; Santamaria, K; Nedvetsky, P; Hundsrucker, C; Beyermann, M ...
Published in: J Am Soc Nephrol
January 2007

The cAMP/protein kinase A (PKA)-dependent insertion of water channel aquaporin-2 (AQP2)-bearing vesicles into the plasma membrane in renal collecting duct principal cells (AQP2 shuttle) constitutes the molecular basis of arginine vasopressin (AVP)-regulated water reabsorption. cAMP/PKA signaling systems are compartmentalized by A kinase anchoring proteins (AKAP) that tether PKA to subcellular sites and by phosphodiesterases (PDE) that terminate PKA signaling through hydrolysis of localized cAMP. In primary cultured principal cells, AVP causes focal activation of PKA. PKA and cAMP-specific phosphodiesterase-4D (PDE4D) are located on AQP2-bearing vesicles. The selective PDE4 inhibitor rolipram increases AKAP-tethered PKA activity on AQP2-bearing vesicles and enhances the AQP2 shuttle and thereby the osmotic water permeability. AKAP18delta, which is located on AQP2-bearing vesicles, directly interacts with PDE4D and PKA. In response to AVP, PDE4D and AQP2 translocate to the plasma membrane. Here PDE4D is activated through PKA phosphorylation and reduces the osmotic water permeability. Taken together, a novel, compartmentalized, and physiologically relevant cAMP-dependent signal transduction module on AQP2-bearing vesicles, comprising anchored PDE4D, AKAP18delta, and PKA, has been identified.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Am Soc Nephrol

DOI

ISSN

1046-6673

Publication Date

January 2007

Volume

18

Issue

1

Start / End Page

199 / 212

Location

United States

Related Subject Headings

  • Water
  • Urology & Nephrology
  • Signal Transduction
  • Sequence Homology, Amino Acid
  • Rolipram
  • Recombinant Proteins
  • Rats, Sprague-Dawley
  • Rats
  • Phosphodiesterase Inhibitors
  • Molecular Sequence Data
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Stefan, E., Wiesner, B., Baillie, G. S., Mollajew, R., Henn, V., Lorenz, D., … Klussmann, E. (2007). Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J Am Soc Nephrol, 18(1), 199–212. https://doi.org/10.1681/ASN.2006020132
Stefan, Eduard, Burkhard Wiesner, George S. Baillie, Rustam Mollajew, Volker Henn, Dorothea Lorenz, Jens Furkert, et al. “Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells.J Am Soc Nephrol 18, no. 1 (January 2007): 199–212. https://doi.org/10.1681/ASN.2006020132.
Stefan E, Wiesner B, Baillie GS, Mollajew R, Henn V, Lorenz D, et al. Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J Am Soc Nephrol. 2007 Jan;18(1):199–212.
Stefan, Eduard, et al. “Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells.J Am Soc Nephrol, vol. 18, no. 1, Jan. 2007, pp. 199–212. Pubmed, doi:10.1681/ASN.2006020132.
Stefan E, Wiesner B, Baillie GS, Mollajew R, Henn V, Lorenz D, Furkert J, Santamaria K, Nedvetsky P, Hundsrucker C, Beyermann M, Krause E, Pohl P, Gall I, MacIntyre AN, Bachmann S, Houslay MD, Rosenthal W, Klussmann E. Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J Am Soc Nephrol. 2007 Jan;18(1):199–212.

Published In

J Am Soc Nephrol

DOI

ISSN

1046-6673

Publication Date

January 2007

Volume

18

Issue

1

Start / End Page

199 / 212

Location

United States

Related Subject Headings

  • Water
  • Urology & Nephrology
  • Signal Transduction
  • Sequence Homology, Amino Acid
  • Rolipram
  • Recombinant Proteins
  • Rats, Sprague-Dawley
  • Rats
  • Phosphodiesterase Inhibitors
  • Molecular Sequence Data