Genetically Encoded Stealth Nanoparticles of a Zwitterionic Polypeptide-Paclitaxel Conjugate Have a Wider Therapeutic Window than Abraxane in Multiple Tumor Models.

Journal Article

Small-molecule therapeutics demonstrate suboptimal pharmacokinetics and bioavailability due to their hydrophobicity and size. One way to overcome these limitations-and improve their efficacy-is to use "stealth" macromolecular carriers that evade uptake by the reticuloendothelial system. Although unstructured polypeptides are of increasing interest as macromolecular drug carriers, current recombinant polypeptides in the clinical pipeline typically lack stealth properties. We address this challenge by developing new unstructured polypeptides, called zwitterionic polypeptides (ZIPPs), that exhibit "stealth" behavior in vivo. We show that conjugating paclitaxel to a ZIPP imparts amphiphilicity to the polypeptide chain that is sufficient to drive its self-assembly into micelles. This in turn increases the half-life of paclitaxel by 17-fold compared to free paclitaxel, and by 1.6-fold compared to the nonstealth control, i.e., ELP-paclitaxel. Treatment of mice bearing highly aggressive prostate or colon cancer with a single dose of ZIPP-paclitaxel nanoparticles leads to near-complete eradication of the tumor, and these nanoparticles have a wider therapeutic window than Abraxane, an FDA-approved taxane nanoformulation.

Full Text

Duke Authors

Cited Authors

  • Banskota, S; Saha, S; Bhattacharya, J; Kirmani, N; Yousefpour, P; Dzuricky, M; Zakharov, N; Li, X; Spasojevic, I; Young, K; Chilkoti, A

Published Date

  • April 2020

Published In

Volume / Issue

  • 20 / 4

Start / End Page

  • 2396 - 2409

PubMed ID

  • 32125864

Pubmed Central ID

  • 32125864

Electronic International Standard Serial Number (EISSN)

  • 1530-6992

International Standard Serial Number (ISSN)

  • 1530-6984

Digital Object Identifier (DOI)

  • 10.1021/acs.nanolett.9b05094

Language

  • eng