Interpretable almost-matching-exactly with instrumental variables

Published

Conference Paper

© 2019 Association For Uncertainty in Artificial Intelligence (AUAI). All rights reserved. Uncertainty in the estimation of the causal effect in observational studies is often due to unmeasured confounding, i.e., the presence of unobserved covariates linking treatments and outcomes. Instrumental Variables (IV) are commonly used to reduce the effects of unmeasured confounding. Existing methods for IV estimation either require strong parametric assumptions, use arbitrary distance metrics, or do not scale well to large datasets. We propose a matching framework for IV in the presence of observed categorical confounders that addresses these weaknesses. Our method first matches units exactly, and then consecutively drops variables to approximately match the remaining units on as many variables as possible. We show that our algorithm constructs better matches than other existing methods on simulated datasets, and we produce interesting results in an application to political canvassing.

Duke Authors

Cited Authors

  • Usaid Awan, M; Liu, Y; Morucci, M; Roy, S; Rudin, C; Volfovsky, A

Published Date

  • January 1, 2019

Published In

  • 35th Conference on Uncertainty in Artificial Intelligence, Uai 2019

Citation Source

  • Scopus