Skip to main content

Nonobstructive left ventricular ejection pressure gradients in man.

Publication ,  Journal Article
Pasipoularides, A; Murgo, JP; Miller, JW; Craig, WE
Published in: Circ Res
August 1987

Simultaneous intraventricular pressure gradients and ejection flow patterns were measured by a multisensor catheter in 6 patients with normal left ventricular function and no valve abnormalities, at rest and in exercise. Peak measured intraventricular pressure gradients were attained very early in ejection, amounted to 6.7 +/- 1.9 (SD) mm Hg at rest, and were intensified to 13.0 +/- 2.3 mm Hg during submaximal supine bicycle exercise. The augmentation of the gradients during exercise was associated with a pronounced accentuation of the flow acceleration and flow at the instant of peak gradient. A peak flow, the intraventricular gradients amounted to 5.4 +/- 1.7 mm Hg at rest and 10.0 +/- 1.8 mm Hg during submaximal exercise. The exercise-induced enhancement of the measured intraventricular pressure difference at the time of peak flow was underlain by an accentuation of the peak flow itself. A semiempirical fluid dynamic model for ejection was applied to the pressure gradient and simultaneous outflow rate and acceleration data to identify the contributions by local and convective acceleration effects to the instantaneous intraventricular gradient values. The peak intraventricular pressure gradient, which is attained very early in ejection, is mostly accounted for by local acceleration effects (85 +/- 5% of the total). Conversely, at peak flow only convective acceleration effects are responsible for the measured pressure gradient. Thus, when inertial effects are augmented, as in exercise and other hyperdynamic states, the intrinsic component of the total left ventricular systolic load can be substantial, even with no outflow tract or valve abnormalities.(ABSTRACT TRUNCATED AT 250 WORDS)

Duke Scholars

Published In

Circ Res

DOI

ISSN

0009-7330

Publication Date

August 1987

Volume

61

Issue

2

Start / End Page

220 / 227

Location

United States

Related Subject Headings

  • Ventricular Function
  • Stroke Volume
  • Physical Exertion
  • Middle Aged
  • Humans
  • Hemodynamics
  • Cardiovascular System & Hematology
  • Cardiac Catheterization
  • Blood Pressure
  • Blood Flow Velocity
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pasipoularides, A., Murgo, J. P., Miller, J. W., & Craig, W. E. (1987). Nonobstructive left ventricular ejection pressure gradients in man. Circ Res, 61(2), 220–227. https://doi.org/10.1161/01.res.61.2.220
Pasipoularides, A., J. P. Murgo, J. W. Miller, and W. E. Craig. “Nonobstructive left ventricular ejection pressure gradients in man.Circ Res 61, no. 2 (August 1987): 220–27. https://doi.org/10.1161/01.res.61.2.220.
Pasipoularides A, Murgo JP, Miller JW, Craig WE. Nonobstructive left ventricular ejection pressure gradients in man. Circ Res. 1987 Aug;61(2):220–7.
Pasipoularides, A., et al. “Nonobstructive left ventricular ejection pressure gradients in man.Circ Res, vol. 61, no. 2, Aug. 1987, pp. 220–27. Pubmed, doi:10.1161/01.res.61.2.220.
Pasipoularides A, Murgo JP, Miller JW, Craig WE. Nonobstructive left ventricular ejection pressure gradients in man. Circ Res. 1987 Aug;61(2):220–227.

Published In

Circ Res

DOI

ISSN

0009-7330

Publication Date

August 1987

Volume

61

Issue

2

Start / End Page

220 / 227

Location

United States

Related Subject Headings

  • Ventricular Function
  • Stroke Volume
  • Physical Exertion
  • Middle Aged
  • Humans
  • Hemodynamics
  • Cardiovascular System & Hematology
  • Cardiac Catheterization
  • Blood Pressure
  • Blood Flow Velocity