Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro.

Journal Article (Journal Article)

When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.

Full Text

Duke Authors

Cited Authors

  • Gusa, A; Williams, JD; Cho, J-E; Averette, AF; Sun, S; Shouse, EM; Heitman, J; Alspaugh, JA; Jinks-Robertson, S

Published Date

  • May 5, 2020

Published In

Volume / Issue

  • 117 / 18

Start / End Page

  • 9973 - 9980

PubMed ID

  • 32303657

Pubmed Central ID

  • PMC7211991

Electronic International Standard Serial Number (EISSN)

  • 1091-6490

Digital Object Identifier (DOI)

  • 10.1073/pnas.2001451117


  • eng

Conference Location

  • United States