Full-dimensional quantum dynamics of SO(X3 Σ- ) in collision with H2

Journal Article (Journal Article)

A six-dimensional (6D) potential energy surface (PES) for the SO(X -HSO(X3Σ-)-H2 system is computed using high-level electronic structure theory and fit using a hybrid invariant polynomial method. Full-dimensional quantum close-coupling scattering calculations have been carried out using this potential for rotational and, for the first time, vibrational quenching transitions of SO induced by H2. State-to-state cross sections and rate coefficients of SO are reported for rotational transitions from rotational levels j1 = 0–10 in the ground vibrational state neglecting fine-structure. Some selected state-to-state rotational rate coefficients are compared with previous theoretical results obtained using a rigid-rotor approximation. For vibrational quenching, state-to-state and total cross sections and rate coefficients were calculated for the transitions in SO(v1=1,j1) + H2(v2=0,j2) → SO(v1′=0,j1′) + H2(v2′=0,j2′) collisions with j1 = 0–5. Cross sections for collision energies in the range 1 to 3000 cm−1 and rate coefficients in the temperature range of 5–600 K are obtained for both para-H2 (j2 = 0) and ortho-H2 (j2 = 1) collision partners. The application of the results to astrophysics is discussed.

Full Text

Duke Authors

Cited Authors

  • Yang, B; Zhang, P; Qu, C; Stancil, PC; Bowman, JM; Balakrishnan, N; Forrey, RC

Published Date

  • April 1, 2020

Published In

Volume / Issue

  • 532 /

International Standard Serial Number (ISSN)

  • 0301-0104

Digital Object Identifier (DOI)

  • 10.1016/j.chemphys.2020.110695

Citation Source

  • Scopus