# Learning one-hidden-layer neural networks with landscape design

Conference Paper

We consider the problem of learning a one-hidden-layer neural network: we assume the input x ∈ Rd is from Gaussian distribution and the label y = a>σ(Bx) + ξ, where a is a nonnegative vector in Rm with m ≤ d, B ∈ Rm×d is a full-rank weight matrix, and ξ is a noise vector. We first give an analytic formula for the population risk of the standard squared loss and demonstrate that it implicitly attempts to decompose a sequence of low-rank tensors simultaneously. Inspired by the formula, we design a non-convex objective function G(•) whose landscape is guaranteed to have the following properties: 1. All local minima of G are also global minima. 2. All global minima of G correspond to the ground truth parameters. 3. The value and gradient of G can be estimated using samples. With these properties, stochastic gradient descent on G provably converges to the global minimum and learn the ground-truth parameters. We also prove finite sample complexity results and validate the results by simulations.

### Duke Authors

### Cited Authors

- Ge, R; Lee, JD; Ma, T

### Published Date

- January 1, 2018

### Published In

- 6th International Conference on Learning Representations, Iclr 2018 Conference Track Proceedings

### Citation Source

- Scopus