Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding.

Journal Article (Journal Article)

Nucleoporin proteins (Nups) have been proposed to mediate spatial and temporal chromatin organization during gene regulation. Nevertheless, the molecular mechanisms in mammalian cells are not well understood. Here, we report that Nucleoporin 153 (NUP153) interacts with the chromatin architectural proteins, CTCF and cohesin, and mediates their binding across cis-regulatory elements and TAD boundaries in mouse embryonic stem (ES) cells. NUP153 depletion results in altered CTCF and cohesin binding and differential gene expression - specifically at the bivalent developmental genes. To investigate the molecular mechanism, we utilize epidermal growth factor (EGF)-inducible immediate early genes (IEGs). We find that NUP153 controls CTCF and cohesin binding at the cis-regulatory elements and POL II pausing during the basal state. Furthermore, efficient IEG transcription relies on NUP153. We propose that NUP153 links the nuclear pore complex (NPC) to chromatin architecture allowing genes that are poised to respond rapidly to developmental cues to be properly modulated.

Full Text

Duke Authors

Cited Authors

  • Kadota, S; Ou, J; Shi, Y; Lee, JT; Sun, J; Yildirim, E

Published Date

  • May 25, 2020

Published In

Volume / Issue

  • 11 / 1

Start / End Page

  • 2606 -

PubMed ID

  • 32451376

Pubmed Central ID

  • PMC7248104

Electronic International Standard Serial Number (EISSN)

  • 2041-1723

Digital Object Identifier (DOI)

  • 10.1038/s41467-020-16394-3


  • eng

Conference Location

  • England