Kinetic-dependent Killing of Oral Pathogens with Nitric Oxide.
Journal Article (Journal Article)
Nitric oxide (NO)-releasing silica nanoparticles were synthesized via the co-condensation of tetramethyl orthosilicate with aminosilanes and subsequent conversion of secondary amines to N-diazeniumdiolate NO donors. A series of ~150 nm NO-releasing particles with different NO totals and release kinetics (i.e., half-lives) were achieved by altering both the identity and mol% composition of the aminosilane precursors. Independent of identical 2 h NO-release totals, enhanced antibacterial action was observed against the periodontopathogens Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis with extended NO-release kinetics at pH 7.4. Negligible bactericidal effect was observed against cariogenic Streptococcus mutans at pH 7.4, even when using NO-releasing silica particles with greater NO-release totals. However, antibacterial activity was observed against S. mutans at lower pH (6.4). This result was attributed to more rapid proton-initiated decomposition of the N-diazeniumdiolate NO donors and greater NO-release payloads. The data suggest a differential sensitivity to NO between cariogenic and periodontopathogenic bacteria with implications for the future development of NO-releasing oral care therapeutics.
Full Text
Duke Authors
Cited Authors
- Backlund, CJ; Worley, BV; Sergesketter, AR; Schoenfisch, MH
Published Date
- August 2015
Published In
Volume / Issue
- 94 / 8
Start / End Page
- 1092 - 1098
PubMed ID
- 26078424
Pubmed Central ID
- PMC4530389
Electronic International Standard Serial Number (EISSN)
- 1544-0591
International Standard Serial Number (ISSN)
- 0022-0345
Digital Object Identifier (DOI)
- 10.1177/0022034515589314
Language
- eng