Skip to main content
Journal cover image

Alkaline Water Electrolysis at 25 A cm−2 with a Microfibrous Flow-through Electrode

Publication ,  Journal Article
Yang, F; Kim, MJ; Brown, M; Wiley, BJ
Published in: Advanced Energy Materials
July 1, 2020

The generation of renewable electricity is variable, leading to periodic oversupply. Excess power can be converted to H2 via water electrolysis, but the conversion cost is currently too high. One way to decrease the cost of electrolysis is to increase the maximum productivity of electrolyzers. This study investigates how nano- and microstructured porous electrodes can improve the productivity of H2 generation in a zero-gap, flow-through alkaline water electrolyzer. Three nickel electrodes—foam, microfiber felt, and nanowire felt—are studied to examine the tradeoff between surface area and pore structure on the performance of alkaline electrolyzers. Although the nanowire felt with the highest surface area initially provides the highest performance, this performance quickly decreases as gas bubbles are trapped within the electrode. The open structure of the foam facilitates bubble removal, but its small surface area limits its maximum performance. The microfiber felt exhibits the best performance because it balances high surface area with the ability to remove bubbles. The microfiber felt maintains a maximum current density of 25 000 mA cm−2 over 100 h without degradation, which corresponds to a hydrogen production rate 12.5- and 50-times greater than conventional proton-exchange membrane and alkaline electrolyzers, respectively.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Advanced Energy Materials

DOI

EISSN

1614-6840

ISSN

1614-6832

Publication Date

July 1, 2020

Volume

10

Issue

25

Related Subject Headings

  • 4016 Materials engineering
  • 3403 Macromolecular and materials chemistry
  • 0915 Interdisciplinary Engineering
  • 0912 Materials Engineering
  • 0303 Macromolecular and Materials Chemistry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yang, F., Kim, M. J., Brown, M., & Wiley, B. J. (2020). Alkaline Water Electrolysis at 25 A cm−2 with a Microfibrous Flow-through Electrode. Advanced Energy Materials, 10(25). https://doi.org/10.1002/aenm.202001174
Yang, F., M. J. Kim, M. Brown, and B. J. Wiley. “Alkaline Water Electrolysis at 25 A cm−2 with a Microfibrous Flow-through Electrode.” Advanced Energy Materials 10, no. 25 (July 1, 2020). https://doi.org/10.1002/aenm.202001174.
Yang F, Kim MJ, Brown M, Wiley BJ. Alkaline Water Electrolysis at 25 A cm−2 with a Microfibrous Flow-through Electrode. Advanced Energy Materials. 2020 Jul 1;10(25).
Yang, F., et al. “Alkaline Water Electrolysis at 25 A cm−2 with a Microfibrous Flow-through Electrode.” Advanced Energy Materials, vol. 10, no. 25, July 2020. Scopus, doi:10.1002/aenm.202001174.
Yang F, Kim MJ, Brown M, Wiley BJ. Alkaline Water Electrolysis at 25 A cm−2 with a Microfibrous Flow-through Electrode. Advanced Energy Materials. 2020 Jul 1;10(25).
Journal cover image

Published In

Advanced Energy Materials

DOI

EISSN

1614-6840

ISSN

1614-6832

Publication Date

July 1, 2020

Volume

10

Issue

25

Related Subject Headings

  • 4016 Materials engineering
  • 3403 Macromolecular and materials chemistry
  • 0915 Interdisciplinary Engineering
  • 0912 Materials Engineering
  • 0303 Macromolecular and Materials Chemistry