Robust algorithms for TSP and steiner tree

Published

Other Article

© Arun Ganesh, Bruce M. Maggs, and Debmalya Panigrahi; licensed under Creative Commons License CC-BY 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Robust optimization is a widely studied area in operations research, where the algorithm takes as input a range of values and outputs a single solution that performs well for the entire range. Specifically, a robust algorithm aims to minimize regret, defined as the maximum difference between the solution's cost and that of an optimal solution in hindsight once the input has been realized. For graph problems in P, such as shortest path and minimum spanning tree, robust polynomial-time algorithms that obtain a constant approximation on regret are known. In this paper, we study robust algorithms for minimizing regret in NP-hard graph optimization problems, and give constant approximations on regret for the classical traveling salesman and Steiner tree problems.

Full Text

Duke Authors

Cited Authors

  • Ganesh, A; Maggs, BM; Panigrahi, D

Published Date

  • June 1, 2020

Published In

Volume / Issue

  • 168 /

International Standard Serial Number (ISSN)

  • 1868-8969

International Standard Book Number 13 (ISBN-13)

  • 9783959771382

Digital Object Identifier (DOI)

  • 10.4230/LIPIcs.ICALP.2020.54

Citation Source

  • Scopus