Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration

Published

Journal Article

© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Transpiration, the dominant component of terrestrial evapotranspiration (ET), directly connects the water, energy and carbon cycles and is typically restricted by soil and atmospheric (for example, the vapour pressure deficit (VPD)) moisture stresses through plant hydraulic processes. These sources of stress are likely to diverge under climate change, with a globally enhanced VPD but more variable and uncertain changes in soil moisture. Here, using a model–data fusion approach, we demonstrate that the common empirical approach used in most Earth system models to evaluate the ET response to soil moisture and VPD, which neglects plant hydraulics, underestimates ET sensitivity to VPD and compensates by overestimating the sensitivity to soil moisture stress. A hydraulic model that describes water transport through the plant better captures ET under high VPD conditions for wide-ranging soil moisture states. These findings highlight the central role of plant hydraulics in regulating the increasing importance of atmospheric moisture stress on biosphere–atmosphere interactions under elevated temperatures.

Full Text

Duke Authors

Cited Authors

  • Liu, Y; Kumar, M; Katul, GG; Feng, X; Konings, AG

Published Date

  • July 1, 2020

Published In

Volume / Issue

  • 10 / 7

Start / End Page

  • 691 - 695

Electronic International Standard Serial Number (EISSN)

  • 1758-6798

International Standard Serial Number (ISSN)

  • 1758-678X

Digital Object Identifier (DOI)

  • 10.1038/s41558-020-0781-5

Citation Source

  • Scopus