Bisphenol A (BPA) the mighty and the mutagenic

Journal Article (Review;Journal)

Bisphenol A (BPA) is one of the most widely used synthetic compounds on the planet. Upon entering the diet, its highest concentration (1–104 ng/g of tissue) has been recorded in the placenta and fetus. This accumulation of BPA can have many health hazards ranging from the easy to repair single strand DNA breaks (SSBs) to error prone double strand DNA breaks (DSBs). Although the Human liver can efficiently metabolize BPA via glucuronidation and sulfation pathways, however the by-product Bisphenol-o-quinone has been shown to act as a DNA adduct. Low doses of BPA have also been shown to interact with various signaling pathways to disrupt normal downstream signaling. Analysis has been made on how BPA could interact with several signaling pathways such as NFκB, JNK, MAPK, ER and AR that eventually lead to disease morphology and even tumorigenesis. The role of low dose BPA is also discussed in dysregulating Ca2+ homeostasis of the cell by inhibiting calcium channels such as SPCA1/2 to suggest a new direction for future research in the realms of BPA induced disease morphology and mutagenicity.

Full Text

Duke Authors

Cited Authors

  • Jalal, N; Surendranath, AR; Pathak, JL; Yu, S; Chung, CY

Published Date

  • January 1, 2018

Published In

Volume / Issue

  • 5 /

Start / End Page

  • 76 - 84

International Standard Serial Number (ISSN)

  • 2214-7500

Digital Object Identifier (DOI)

  • 10.1016/j.toxrep.2017.12.013

Citation Source

  • Scopus