Notochordal Signals Establish Phylogenetic Identity of the Teleost Spine.

Published

Journal Article

The spine is a defining feature of the vertebrate body plan. However, broad differences in vertebral structures and morphogenetic strategies occur across vertebrate groups, clouding the homology between their developmental programs. Analysis of a zebrafish mutant, spondo, whose spine is dysmorphic, prompted us to reconstruct paleontological evidence, highlighting specific transitions during teleost spine evolution. Interestingly, the spondo mutant recapitulates characteristics present in basal fishes, not found in extant teleosts. Further analysis of the mutation implicated the teleost-specific notochord protein, Calymmin, as a key regulator of spine patterning in zebrafish. The mutation in cmn results in loss of notochord sheath segmentation, altering osteoblast migration to the developing spine, and increasing sensitivity to somitogenesis defects associated with congenital scoliosis in amniotes. These data suggest that signals from the notochord define the evolutionary identity of the spine and demonstrate how simple shifts in development can revert traits canalized for about 250 million years.

Full Text

Duke Authors

Cited Authors

  • Peskin, B; Henke, K; Cumplido, N; Treaster, S; Harris, MP; Bagnat, M; Arratia, G

Published Date

  • July 20, 2020

Published In

Volume / Issue

  • 30 / 14

Start / End Page

  • 2805 - 2814.e3

PubMed ID

  • 32559448

Pubmed Central ID

  • 32559448

Electronic International Standard Serial Number (EISSN)

  • 1879-0445

Digital Object Identifier (DOI)

  • 10.1016/j.cub.2020.05.037

Language

  • eng

Conference Location

  • England