Kilohertz waveforms optimized to produce closed-state Na+ channel inactivation eliminate onset response in nerve conduction block.

Journal Article (Journal Article)

The delivery of kilohertz frequency alternating current (KHFAC) generates rapid, controlled, and reversible conduction block in motor, sensory, and autonomic nerves, but causes transient activation of action potentials at the onset of the blocking current. We implemented a novel engineering optimization approach to design blocking waveforms that eliminated the onset response by moving voltage-gated Na+ channels (VGSCs) to closed-state inactivation (CSI) without first opening. We used computational models and particle swarm optimization (PSO) to design a charge-balanced 10 kHz biphasic current waveform that produced conduction block without onset firing in peripheral axons at specific locations and with specific diameters. The results indicate that it is possible to achieve onset-free KHFAC nerve block by causing CSI of VGSCs. Our novel approach for designing blocking waveforms and the resulting waveform may have utility in clinical applications of conduction block of peripheral nerve hyperactivity, for example in pain and spasticity.

Full Text

Duke Authors

Cited Authors

  • Yi, G; Grill, WM

Published Date

  • June 2020

Published In

Volume / Issue

  • 16 / 6

Start / End Page

  • e1007766 -

PubMed ID

  • 32542050

Pubmed Central ID

  • PMC7316353

Electronic International Standard Serial Number (EISSN)

  • 1553-7358

International Standard Serial Number (ISSN)

  • 1553-734X

Digital Object Identifier (DOI)

  • 10.1371/journal.pcbi.1007766


  • eng