Skip to main content

Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds.

Publication ,  Journal Article
Wurster, S; Tatara, AM; Albert, ND; Ibrahim, AS; Heitman, J; Lee, SC; Shetty, AC; McCracken, C; Graf, KT; Mikos, AG; Bruno, VM; Kontoyiannis, DP
Published in: mBio
June 30, 2020

Trauma-related necrotizing myocutaneous mucormycosis (NMM) has a high morbidity and mortality in victims of combat-related injuries, geometeorological disasters, and severe burns. Inspired by the observation that several recent clusters of NMM have been associated with extreme mechanical forces (e.g., during tornados), we studied the impact of mechanical stress on Mucoralean biology and virulence in a Drosophila melanogaster infection model. In contrast to other experimental procedures to exert mechanical stress, tornadic shear challenge (TSC) by magnetic stirring induced a hypervirulent phenotype in several clinically relevant Mucorales species but not in Aspergillus or Fusarium Whereas fungal growth rates, morphogenesis, and susceptibility to noxious environments or phagocytes were not altered by TSC, soluble factors released in the supernatant of shear-challenged R. arrhizus spores rendered static spores hypervirulent. Consistent with a rapid decay of TSC-induced hypervirulence, minimal transcriptional changes were revealed by comparative RNA sequencing analysis of static and shear-challenged Rhizopus arrhizus However, inhibition of the calcineurin/heat shock protein 90 (hsp90) stress response circuitry by cyclosporine and tanespimycin abrogated the increased pathogenicity of R. arrhizus spores following TSC. Similarly, calcineurin loss-of-function mutants of Mucor circinelloides displayed no increased virulence capacity in flies after undergoing TSC. Collectively, these results establish that TSC induces hypervirulence specifically in Mucorales and point out the calcineurin/hsp90 pathway as a key orchestrator of this phenotype. Our findings invite future studies of topical calcineurin inhibitor treatment of wounds as an adjunct mitigation strategy for NMM following high-energy trauma.IMPORTANCE Given the limited efficacy of current medical treatments in trauma-related necrotizing mucormycosis, there is a dire need to better understand the Mucoralean pathophysiology in order to develop novel strategies to counteract fungal tissue invasion following severe trauma. Here, we describe that tornadic shear stress challenge transiently induces a hypervirulent phenotype in various pathogenic Mucorales species but not in other molds known to cause wound infections. Pharmacological and genetic inhibition of calcineurin signaling abrogated hypervirulence in shear stress-challenged Mucorales, encouraging further evaluation of (topical) calcineurin inhibitors to improve therapeutic outcomes of NMM after combat-related blast injuries or violent storms.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

mBio

DOI

EISSN

2150-7511

Publication Date

June 30, 2020

Volume

11

Issue

3

Location

United States

Related Subject Headings

  • Virulence
  • Stress, Mechanical
  • Spores, Fungal
  • Rhizopus oryzae
  • Phenotype
  • Mucormycosis
  • Mucorales
  • Humans
  • Fusarium
  • Female
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wurster, S., Tatara, A. M., Albert, N. D., Ibrahim, A. S., Heitman, J., Lee, S. C., … Kontoyiannis, D. P. (2020). Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. MBio, 11(3). https://doi.org/10.1128/mBio.01414-20
Wurster, Sebastian, Alexander M. Tatara, Nathaniel D. Albert, Ashraf S. Ibrahim, Joseph Heitman, Soo Chan Lee, Amol C. Shetty, et al. “Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds.MBio 11, no. 3 (June 30, 2020). https://doi.org/10.1128/mBio.01414-20.
Wurster S, Tatara AM, Albert ND, Ibrahim AS, Heitman J, Lee SC, et al. Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. mBio. 2020 Jun 30;11(3).
Wurster, Sebastian, et al. “Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds.MBio, vol. 11, no. 3, June 2020. Pubmed, doi:10.1128/mBio.01414-20.
Wurster S, Tatara AM, Albert ND, Ibrahim AS, Heitman J, Lee SC, Shetty AC, McCracken C, Graf KT, Mikos AG, Bruno VM, Kontoyiannis DP. Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. mBio. 2020 Jun 30;11(3).

Published In

mBio

DOI

EISSN

2150-7511

Publication Date

June 30, 2020

Volume

11

Issue

3

Location

United States

Related Subject Headings

  • Virulence
  • Stress, Mechanical
  • Spores, Fungal
  • Rhizopus oryzae
  • Phenotype
  • Mucormycosis
  • Mucorales
  • Humans
  • Fusarium
  • Female