Skip to main content

Lysophosphatidic acid receptor signaling in mammalian retinal pigment epithelial cells.

Publication ,  Journal Article
Thoreson, WB; Ryan, JS; Shi, C; Kelly, ME; Bryson, EJ; Toews, ML; Ediger, TL; Chacko, DM
Published in: Invest Ophthalmol Vis Sci
July 2002

PURPOSE: Lysophosphatidic acid (LPA) is a phospholipid growth factor that stimulates proliferation, chemotaxis, cation currents, and K(+) currents in retinal pigment epithelial (RPE) cells. LPA receptor transduction was analyzed in human and rat RPE cells. METHODS: Cells were cultured with standard methods, and signaling pathways were analyzed with a variety of approaches, including whole-cell recording, calcium imaging, and second-messenger assays. RESULTS: LPA-activated nonselective cation currents in rat RPE were blocked by the protein tyrosine kinase (PTK) inhibitor genistein, by the MAP kinase kinase (MEK) inhibitor PD98059, and by loading cells with antibodies to G(alpha(i)/o/t/z). LPA activated the MAP kinase and extracellular signal-related kinase (ERK)-1, and produced a dose-dependent inhibition of cAMP production. LPA stimulated a dose-dependent increase in [Ca(2+)](i) that persisted in Ca(2+)-free medium and was reduced by pretreatment with thapsigargin, suggesting it involves release from intracellular stores. The [Ca(2+)](i) increase was not blocked by ryanodine or the phospholipase C inhibitor U73122. LPA did not stimulate inositol phosphate production. Similar to the cation current, LPA-evoked [Ca(2+)](i) increases were blocked by PD98059 and by loading cells with antibodies to G(alpha(i)/o/t/z). RT-PCR experiments showed the presence of RNA for three LPA receptor subtypes (Edg2, -4, and -7); RNase protection assays showed the strongest expression for Edg2 receptor RNA. CONCLUSIONS: LPA receptors in RPE cells activate pertussis toxin (PTx)-sensitive G proteins that inhibit cAMP accumulation; stimulate MAP kinase which activates a cation current and probably contributes to mitogenesis; and stimulate release of Ca(2+) from intracellular stores that appears independent of IP(3) and ryanodine receptor activation.

Duke Scholars

Published In

Invest Ophthalmol Vis Sci

ISSN

0146-0404

Publication Date

July 2002

Volume

43

Issue

7

Start / End Page

2450 / 2461

Location

United States

Related Subject Headings

  • Signal Transduction
  • Second Messenger Systems
  • Reverse Transcriptase Polymerase Chain Reaction
  • Receptors, Lysophosphatidic Acid
  • Receptors, G-Protein-Coupled
  • Receptors, Cell Surface
  • Rats, Long-Evans
  • Rats
  • Pigment Epithelium of Eye
  • Patch-Clamp Techniques
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Thoreson, W. B., Ryan, J. S., Shi, C., Kelly, M. E., Bryson, E. J., Toews, M. L., … Chacko, D. M. (2002). Lysophosphatidic acid receptor signaling in mammalian retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 43(7), 2450–2461.
Thoreson, Wallace B., Jennifer S. Ryan, Chanjuan Shi, Melanie E. Kelly, Eric J. Bryson, Myron L. Toews, Tracy L. Ediger, and David M. Chacko. “Lysophosphatidic acid receptor signaling in mammalian retinal pigment epithelial cells.Invest Ophthalmol Vis Sci 43, no. 7 (July 2002): 2450–61.
Thoreson WB, Ryan JS, Shi C, Kelly ME, Bryson EJ, Toews ML, et al. Lysophosphatidic acid receptor signaling in mammalian retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2450–61.
Thoreson, Wallace B., et al. “Lysophosphatidic acid receptor signaling in mammalian retinal pigment epithelial cells.Invest Ophthalmol Vis Sci, vol. 43, no. 7, July 2002, pp. 2450–61.
Thoreson WB, Ryan JS, Shi C, Kelly ME, Bryson EJ, Toews ML, Ediger TL, Chacko DM. Lysophosphatidic acid receptor signaling in mammalian retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2450–2461.

Published In

Invest Ophthalmol Vis Sci

ISSN

0146-0404

Publication Date

July 2002

Volume

43

Issue

7

Start / End Page

2450 / 2461

Location

United States

Related Subject Headings

  • Signal Transduction
  • Second Messenger Systems
  • Reverse Transcriptase Polymerase Chain Reaction
  • Receptors, Lysophosphatidic Acid
  • Receptors, G-Protein-Coupled
  • Receptors, Cell Surface
  • Rats, Long-Evans
  • Rats
  • Pigment Epithelium of Eye
  • Patch-Clamp Techniques