Proliferation of HIV-infected renal epithelial cells following virus acquisition from infected macrophages.

Journal Article (Journal Article)

OBJECTIVES: HIV-1 can infect and persist in different organs and tissues, resulting in the generation of multiple viral compartments and reservoirs. Increasing evidence supports the kidney as such a reservoir. Previous work demonstrated that HIV-1 infected CD4 T-cells transfer virus to renal tubule epithelial (RTE) cells through cell-to-cell contact. In addition to CD4 T cells, macrophages represent the other major target of HIV-1. Renal macrophages induce and regulate inflammatory responses and are critical to homeostatic regulation of the kidney environment. Combined with their ability to harbour virus, macrophages may also play an important role in the spread of HIV-1 infection in the kidney. DESIGN AND METHODS: Multiparametric histochemistry analysis was performed on kidney biopsies from individuals with HIV-1 associated nephropathy (HIVAN). Primary monocyte-derived macrophages were infected with a GFP-expressing replication competent HIV-1. HIV-1 transfer from macrophages to RTE cells was carried out in a coculture system and evaluated by fluorescence-microscopy and flow-cytometry. Live imaging was performed to assess the fate of HIV-1 infected RTE cells over time. RESULTS: We show that macrophages are abundantly present in the renal inflammatory infiltrate of individuals with HIVAN. We observed contact-dependent HIV-1 transfer from infected macrophages to both primary and immortalized renal cells. Live imaging of HIV-1 infected RTE cells revealed four different fates: proliferation, hypertrophy, latency and cell death. CONCLUSION: Our study suggests that macrophages may play a role in the dissemination of HIV-1 in the kidney and that proliferation of infected renal cells may contribute to HIV-1 persistence in this compartment.

Full Text

Duke Authors

Cited Authors

  • Hughes, K; Akturk, G; Gnjatic, S; Chen, B; Klotman, M; Blasi, M

Published Date

  • September 1, 2020

Published In

Volume / Issue

  • 34 / 11

Start / End Page

  • 1581 - 1591

PubMed ID

  • 32701578

Pubmed Central ID

  • 32701578

Electronic International Standard Serial Number (EISSN)

  • 1473-5571

Digital Object Identifier (DOI)

  • 10.1097/QAD.0000000000002589

Language

  • eng

Conference Location

  • England