Subcellular mRNA localization and local translation of Arhgap11a in radial glial cells regulates cortical development

Journal Article (Academic article)

mRNA localization and local translation enable exquisite spatial and temporal control of gene expression, particularly in highly polarized and elongated cells. These features are especially prominent in radial glial cells (RGCs), which serve as neural and glial precursors of the developing cerebral cortex, and scaffolds for migrating neurons. Yet the mechanisms by which distinct sub-cellular compartments of RGCs accomplish their diverse functions are poorly understood. Here, we demonstrate that subcellular RNA localization and translation of the RhoGAP Arhgap11a controls RGC morphology and mediates cortical cytoarchitecture. Arhgap11a mRNA and protein exhibit conserved localization to RGC basal structures in mice and humans, conferred by a 5′UTR cis-element. Proper RGC morphology relies upon active Arhgap11a mRNA transport and localization to basal structures, where ARHGAP11A is locally synthesized. Thus, RhoA activity is spatially and acutely activated via local translation in RGCs to promote neuron positioning and cortical cytoarchitecture. Altogether, our study demonstrates that mRNA localization and local translation mediate compartmentalization of neural progenitor functions to control brain development.

Full Text

Duke Authors

Cited Authors

  • Pilaz, L-J; Joshi, K; Liu, J; Tsunekawa, Y; Alsina, F; Sethi, S; Suzuki, I; Vanderhaeghen, P; Polleux, F; Silver, D

Published Date

  • July 31, 2020

Published In

  • Biorxiv

Digital Object Identifier (DOI)

  • 10.1101/2020.07.30.229724