Infrastructure and tools for teaching computing throughout the statistical curriculum

Journal Article

Modern statistics is fundamentally a computational discipline, but too often this fact is not reflected in our statistics curricula. With the rise of big data and data science it has become increasingly clear that students both want, expect, and need explicit training in this area of the discipline. Additionally, recent curricular guidelines clearly state that working with data requires extensive computing skills and that statistics students should be fluent in accessing, manipulating, analyzing, and modeling with professional statistical analysis software. Much has been written in the statistics education literature about pedagogical tools and approaches to provide a practical computational foundation for students. This article discusses the computational infrastructure and toolkit choices to allow for these pedagogical innovations while minimizing frustration and improving adoption for both our students and instructors.

Full Text

Duke Authors

Cited Authors

  • Cetinkaya-Rundel, M; Rundel, CW

Digital Object Identifier (DOI)

  • 10.7287/peerj.preprints.3181v1