Uniform and Stable Aerosol Jet Printing of Carbon Nanotube Thin-Film Transistors by Ink Temperature Control.

Journal Article (Journal Article)

Semiconducting carbon nanotube (CNT) networks exhibit electrical, mechanical, and chemical properties attractive for thin-film applications, and printing allows for scalable and economically favorable fabrication of CNT thin-film transistors (TFTs). However, device-to-device variation of printed CNT-TFTs remains a concern, which largely stems from variations in printed CNT thin-film morphology and resulting properties. In this work, we overcome the challenges associated with printing uniformity and demonstrate an aerosol jet printing process that yields devices exhibiting a hole mobility of μh = 12.5 cm2 /V·s with a relative standard deviation as small as 4% (from over 38 devices). The enabling factors of such high uniformity include control of the CNT ink bath temperature during printing, ink formulation with nonvolatile and viscosifying additives, and a thermal treatment for polymer removal. It is discovered that a low CNT ink temperature benefits aerosol jet printing uniformity and stability in both short-term (∼1 min) and long-term (∼1 h) printing settings. These findings shed light on the effect of a commonly overlooked dimension of CNT aerosol jet printing and provide a practical strategy for large-scale, high-consistency realization of CNT-TFTs.

Full Text

Duke Authors

Cited Authors

  • Lu, S; Zheng, J; Cardenas, JA; Williams, NX; Lin, Y-C; Franklin, AD

Published Date

  • September 8, 2020

Published In

Volume / Issue

  • 12 / 38

Start / End Page

  • 43083 - 43089

PubMed ID

  • 32897054

Pubmed Central ID

  • PMC7895321

Electronic International Standard Serial Number (EISSN)

  • 1944-8252

International Standard Serial Number (ISSN)

  • 1944-8244

Digital Object Identifier (DOI)

  • 10.1021/acsami.0c12046


  • eng