Inhibition of Caspases Improves Non-Viral T Cell Receptor Editing.

Journal Article (Journal Article)

T cell receptor (TCR) knockout is a critical step in producing universal chimeric antigen receptor T cells for cancer immunotherapy. A promising approach to achieving the knockout is to deliver the CRISPR/Cas9 system into cells using electrotransfer technology. However, clinical applications of the technology are currently limited by the low cell viability. In this study, we attempt to solve the problem by screening small molecule drugs with an immortalized human T cell line, Jurkat clone E6-1, for inhibition of apoptosis. The study identifies a few caspase inhibitors that could be used to simultaneously enhance the cell viability and the efficiency of plasmid DNA electrotransfer. Additionally, we show that the enhancement could be achieved through knockdown of caspase 3 expression in siRNA treated cells, suggesting that the cell death in electrotransfer experiments was caused mainly by caspase 3-dependent apoptosis. Finally, we investigated if the caspase inhibitors could improve TCR gene-editing with electrotransferred ribonucleoprotein, a complex of Cas9 protein and a T cell receptor-α constant (TRAC)-targeting single guide RNA (sgRNA). Our data showed that inhibition of caspases post electrotransfer could significantly increase cell viability without compromising the TCR disruption efficiency. These new findings can be used to improve non-viral T cell engineering.

Full Text

Duke Authors

Cited Authors

  • Wang, C; Chang, C-C; Wang, L; Yuan, F

Published Date

  • September 11, 2020

Published In

Volume / Issue

  • 12 / 9

Start / End Page

  • E2603 -

PubMed ID

  • 32933048

Pubmed Central ID

  • PMC7565551

Electronic International Standard Serial Number (EISSN)

  • 2072-6694

International Standard Serial Number (ISSN)

  • 2072-6694

Digital Object Identifier (DOI)

  • 10.3390/cancers12092603


  • eng