Novel Integrated Biotrickling Filter-Anammox Bioreactor System for the Complete Treatment of Ammonia in Air with Nitrification and Denitrification.

Journal Article (Journal Article)

An integrated biotrickling filter-anammox bioreactor system for the complete treatment of ammonia in air with conversion to nitrogen gas without the supply of an extraneous electron donor for denitrification was established. Partial nitritation (i.e., conversion of ammonium to nitrite) was successfully achieved in the biotrickling filter (BTF) through free ammonia (FA) and free nitrous acid (FNA) inhibition on nitrite-oxidizing bacteria (NOB). During transients, while increasing nitrogen loading, FA was the main inhibitor of ammonia-oxidizing bacteria (AOB) and NOB, while during a steady state, it was mainly FNA, which was responsible for inhibitory effects due to the accumulation of nitrite. Ammonia removal by the BTF reached 50 gN m-3 h-1 with 100% removal at an inlet concentration of 404 ppmv and a gas residence time of 21 s. Average removal of ammonia during stable operation was 95%. The anammox bioreactor was slightly undersized compared to the BTF and could remove 75% of total nitrogen discharged by the BTF when the two reactors were connected and liquid was in one-pass mode. This undersizing caused accumulation of nitrite in the system when liquid was circled in a quasi-closed loop, which gradually inhibited the activity of anammox bacteria. Overall, this study demonstrates that ammonia in air can be effectively treated and converted to harmless nitrogen gas without an external electron donor supply using a biotrickling filter combined with an anammox bioreactor.

Full Text

Duke Authors

Cited Authors

  • Tang, L; Deshusses, MA

Published Date

  • October 2020

Published In

Volume / Issue

  • 54 / 19

Start / End Page

  • 12654 - 12661

PubMed ID

  • 32902968

Pubmed Central ID

  • 32902968

Electronic International Standard Serial Number (EISSN)

  • 1520-5851

International Standard Serial Number (ISSN)

  • 0013-936X

Digital Object Identifier (DOI)

  • 10.1021/acs.est.0c03332

Language

  • eng