Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents.

Journal Article (Journal Article)

Stents have evolved significantly since their introduction to the medical field in the early 1980s, becoming widely used in percutaneous coronary interventions and following nephrological procedures. However, the current commercially available stents do not degrade and remain in the body forever, leading to problems like restenosis in cardiovascular applications or requiring removal procedures in ureteral applications. Efforts to replace metal with resorbable materials have largely been halted after the commercial failure of and safety concerns elicited by Abbott's Absorb stent in 2017. Industry continues to use common polymers such as poly(l-lactide) (PLLA) and polycaprolactone (PCL) for biomedical products, but due to the weak mechanical properties of these bioresorbable materials in comparison to metals, these devices have struggled to accomplish the goals set, increasing risk of thrombosis. 3D printing stents using bioresorbable and shape memory materials could provide a method of patient-personalized production, remove the need for balloon expansion, and limit stent migration, thus bringing a new age of stent technology. The investigation of a range of 3D-printable and bioresorbable shape-memory polymers can provide solutions to the shortcomings of previously explored bioresorbable stents and revitalize the medical device industry efforts into advancing stent technology.

Full Text

Duke Authors

Cited Authors

  • Yeazel, TR; Becker, ML

Published Date

  • October 2020

Published In

Volume / Issue

  • 21 / 10

Start / End Page

  • 3957 - 3965

PubMed ID

  • 32924443

Electronic International Standard Serial Number (EISSN)

  • 1526-4602

International Standard Serial Number (ISSN)

  • 1525-7797

Digital Object Identifier (DOI)

  • 10.1021/acs.biomac.0c01082


  • eng