A fast algorithm for radiative transport in isotropic media

Published

Journal Article

© 2019 Elsevier Inc. Constructing efficient numerical solution methods for the equation of radiative transfer (ERT) remains as a challenging task in scientific computing despite of the tremendous development on the subject in recent years. We present in this work a simple fast computational algorithm for solving the ERT in isotropic media. The algorithm we developed has two steps. In the first step, we solve a volume integral equation for the angularly-averaged ERT solution using iterative schemes such as the GMRES method. The computation in this step is accelerated with a fast multipole method (FMM). In the second step, we solve a scattering-free transport equation to recover the angular dependence of the ERT solution. The algorithm does not require the underlying medium be homogeneous. We present numerical simulations under various scenarios to demonstrate the performance of the proposed numerical algorithm for both homogeneous and heterogeneous media.

Full Text

Duke Authors

Cited Authors

  • Ren, K; Zhang, R; Zhong, Y

Published Date

  • December 15, 2019

Published In

Volume / Issue

  • 399 /

Electronic International Standard Serial Number (EISSN)

  • 1090-2716

International Standard Serial Number (ISSN)

  • 0021-9991

Digital Object Identifier (DOI)

  • 10.1016/j.jcp.2019.108958

Citation Source

  • Scopus