Comparison between midline and lateral fluid percussion injury in mice reveals prolonged but divergent cortical neuroinflammation.

Journal Article (Journal Article)

Animal models are critical for determining the mechanisms mediating traumatic brain injury-induced (TBI) neuropathology. Fluid percussion injury (FPI) is a widely used model of brain injury typically applied either midline or parasagittally (lateral). Midline FPI induces a diffuse TBI, while lateral FPI induces both focal cortical injury (ipsilateral hemisphere) and diffuse injury (contralateral hemisphere). Nonetheless, discrete differences in neuroinflammation and neuropathology between these two versions of FPI remain unclear. The purpose of this study was to compare acute (4-72 h) and subacute (7 days) neuroinflammatory responses between midline and lateral FPI. Midline FPI resulted in longer righting reflex times than lateral FPI. At acute time points, the inflammatory responses to the two different injuries were similar. For instance, there was evidence of monocytes and cytokine mRNA expression in the brain with both injuries acutely. Midline FPI had the highest proportion of brain monocytes and highest IL-1β/TNFα mRNA expression 24 h later. NanoString nCounter analysis 7 days post-injury revealed robust and prolonged expression of inflammatory-related genes in the cortex after midline FPI compared to lateral FPI; however, Iba-1 cortical immunoreactivity was increased with lateral FPI. Thus, midline and lateral FPI caused similar cortical neuroinflammatory responses acutely and mRNA expression of inflammatory genes was detectable in the brain 7 days later. The primary divergence was that inflammatory gene expression was greater and more diverse subacutely after midline FPI. These results provide novel insight to variations between midline and lateral FPI, which may recapitulate unique temporal pathogenesis.

Full Text

Duke Authors

Cited Authors

  • Witcher, KG; Dziabis, JE; Bray, CE; Gordillo, AJ; Kumar, JE; Eiferman, DS; Godbout, JP; Kokiko-Cochran, ON

Published Date

  • November 2020

Published In

Volume / Issue

  • 1746 /

Start / End Page

  • 146987 -

PubMed ID

  • 32592739

Pubmed Central ID

  • PMC7484082

Electronic International Standard Serial Number (EISSN)

  • 1872-6240

International Standard Serial Number (ISSN)

  • 0006-8993

Digital Object Identifier (DOI)

  • 10.1016/j.brainres.2020.146987


  • eng