Skip to main content
Journal cover image

Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer

Publication ,  Journal Article
De Jesus Gálvez-Vázquez, M; Moreno-García, P; Xu, H; Hou, Y; Hu, H; Montiel, IZ; Rudnev, AV; Alinejad, S; Grozovski, V; Wiley, BJ; Arenz, M ...
Published in: ACS Catalysis
November 6, 2020

Among the electrolyzers under development for CO2 electroreduction at practical reaction rates, gas-fed approaches that use gas diffusion electrodes (GDEs) as cathodes are the most promising. However, the insufficient long-term stability of these technologies precludes their commercial deployment. The structural deterioration of the catalyst material is one possible source of device durability issues. Unfortunately, this issue has been insufficiently studied in systems using actual technical electrodes. Herein, we make use of a morphologically tailored Ag-based model nanocatalyst [Ag nanocubes (NCs)] assembled on a zero-gap GDE electrolyzer to establish correlations between catalyst structures, experimental environments, electrocatalytic performances, and morphological degradation mechanisms in highly alkaline media. The morphological evolution of the Ag-NCs on the GDEs induced by the CO2 electrochemical reduction reaction (CO2RR), as well as the direct mechanical contact between the catalyst layer and anion-exchange membrane, is analyzed by identical location and post-electrolysis scanning electron microscopy investigations. We find that at low and mild potentials positive of -1.8 V versus Ag/AgCl, the Ag-NCs undergo no apparent morphological alteration induced by the CO2RR, and the device performance remains stable. At more stringent cathodic conditions, device failure commences within minutes, and catalyst corrosion leads to slightly truncated cube morphologies and the appearance of smaller Ag nanoparticles. However, comparison with complementary CO2RR experiments performed in H-cell configurations in a neutral environment clearly proves that the system failure typically encountered in the gas-fed approaches does not stem solely from the catalyst morphological degradation. Instead, the observed CO2RR performance deterioration is mainly due to the local high alkalinity that inevitably develops at high current densities in the zero-gap approach and leads to the massive precipitation of carbonates which is not observed in the aqueous environment (H-cell configuration).

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

ACS Catalysis

DOI

EISSN

2155-5435

Publication Date

November 6, 2020

Volume

10

Issue

21

Start / End Page

13096 / 13108

Related Subject Headings

  • 3406 Physical chemistry
  • 3405 Organic chemistry
  • 3106 Industrial biotechnology
  • 0904 Chemical Engineering
  • 0305 Organic Chemistry
  • 0302 Inorganic Chemistry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
De Jesus Gálvez-Vázquez, M., Moreno-García, P., Xu, H., Hou, Y., Hu, H., Montiel, I. Z., … Broekmann, P. (2020). Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer. ACS Catalysis, 10(21), 13096–13108. https://doi.org/10.1021/acscatal.0c03609
De Jesus Gálvez-Vázquez, M., P. Moreno-García, H. Xu, Y. Hou, H. Hu, I. Z. Montiel, A. V. Rudnev, et al. “Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer.” ACS Catalysis 10, no. 21 (November 6, 2020): 13096–108. https://doi.org/10.1021/acscatal.0c03609.
De Jesus Gálvez-Vázquez M, Moreno-García P, Xu H, Hou Y, Hu H, Montiel IZ, et al. Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer. ACS Catalysis. 2020 Nov 6;10(21):13096–108.
De Jesus Gálvez-Vázquez, M., et al. “Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer.” ACS Catalysis, vol. 10, no. 21, Nov. 2020, pp. 13096–108. Scopus, doi:10.1021/acscatal.0c03609.
De Jesus Gálvez-Vázquez M, Moreno-García P, Xu H, Hou Y, Hu H, Montiel IZ, Rudnev AV, Alinejad S, Grozovski V, Wiley BJ, Arenz M, Broekmann P. Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer. ACS Catalysis. 2020 Nov 6;10(21):13096–13108.
Journal cover image

Published In

ACS Catalysis

DOI

EISSN

2155-5435

Publication Date

November 6, 2020

Volume

10

Issue

21

Start / End Page

13096 / 13108

Related Subject Headings

  • 3406 Physical chemistry
  • 3405 Organic chemistry
  • 3106 Industrial biotechnology
  • 0904 Chemical Engineering
  • 0305 Organic Chemistry
  • 0302 Inorganic Chemistry