Master Regulators and Cofactors of Human Neuronal Cell Fate Specification Identified by CRISPR Gene Activation Screens.

Journal Article (Journal Article)

Technologies to reprogram cell-type specification have revolutionized the fields of regenerative medicine and disease modeling. Currently, the selection of fate-determining factors for cell reprogramming applications is typically a laborious and low-throughput process. Therefore, we use high-throughput pooled CRISPR activation (CRISPRa) screens to systematically map human neuronal cell fate regulators. We utilize deactivated Cas9 (dCas9)-based gene activation to target 1,496 putative transcription factors (TFs) in the human genome. Using a reporter of neuronal commitment, we profile the neurogenic activity of these factors in human pluripotent stem cells (PSCs), leading to a curated set of pro-neuronal factors. Activation of pairs of TFs reveals neuronal cofactors, including E2F7, RUNX3, and LHX8, that improve conversion efficiency, subtype specificity, and maturation of neuronal cell types. Finally, using multiplexed gene regulation with orthogonal CRISPR systems, we demonstrate improved neuronal differentiation with concurrent activation and repression of target genes, underscoring the power of CRISPR-based gene regulation for programming complex cellular phenotypes.

Full Text

Duke Authors

Cited Authors

  • Black, JB; McCutcheon, SR; Dube, S; Barrera, A; Klann, TS; Rice, GA; Adkar, SS; Soderling, SH; Reddy, TE; Gersbach, CA

Published Date

  • December 1, 2020

Published In

Volume / Issue

  • 33 / 9

Start / End Page

  • 108460 -

PubMed ID

  • 33264623

Pubmed Central ID

  • PMC7730023

Electronic International Standard Serial Number (EISSN)

  • 2211-1247

Digital Object Identifier (DOI)

  • 10.1016/j.celrep.2020.108460


  • eng

Conference Location

  • United States