Nanoparticles as vectors for antibiotic resistance: The association of silica nanoparticles with environmentally relevant extracellular antibiotic resistance genes.

Journal Article (Journal Article)

A relevant but yet unconsidered subset of particles that may alter the fate of extracellular antibiotic resistance genes (eARGs) are nano-scale particles (NPs), which are ubiquitous in natural environments and have unique properties. In this study, sorption isotherms were developed describing the association of linear DNA fragments isolated from widespread eARGs (blaI and nptII) with either micon-sized kaolinite or silica nanoparticles (SNPs), to determine if sorption capacity was enhanced at the nanoscale. For each isotherm, eARG fragments were added at five starting concentrations (5-40 μg/mL) to mixed batch systems with 0.25 g of particles and nuclease-free water. Sorption was quantified by the removal of DNA from solution, as detected by a Qubit fluorimeter. Isotherms were developed for eARGs of various fragment lengths (508, 680 and 861 bp), guanine-cytosine (GC) contents (34%, 47% and 54%) and both double and single stranded eARGs, to assess the impact of DNA properties on particle association. Sorption isotherms were also developed in systems with added humic acid and/or CaCl2 , to assess the impact of these environmental parameters on sorption. FTIR analysis was performed to analyze the conformation of sorbed eARGs. Desorption of eARGs was studied by quantifying the removal of eDNA from washed and vortexed post-sorption particles. Statistically significant irreversible sorption of eARGs to environmentally relevant NPs (humic acid functionalized silica nanoparticles) was demonstrated for the first time. Nano-emergent properties did not increase sorption capacity of eARGs, but led to a unique compressed conformation of sorbed eARGs. The addition of humic acid, increased CaCl2 concentration and small DNA fragment size favored sorption. NPs showed a slight preference for the sorption of single-stranded DNA over double-stranded DNA. These findings suggest that NP association with eARGs may be a significant and unique environmental phenomenon that could influence the spread of antibiotic resistance.

Full Text

Duke Authors

Cited Authors

  • Chowdhury, NN; Cox, AR; Wiesner, MR

Published Date

  • March 2021

Published In

Volume / Issue

  • 761 /

Start / End Page

  • 143261 -

PubMed ID

  • 33223180

Pubmed Central ID

  • 33223180

Electronic International Standard Serial Number (EISSN)

  • 1879-1026

International Standard Serial Number (ISSN)

  • 0048-9697

Digital Object Identifier (DOI)

  • 10.1016/j.scitotenv.2020.143261

Language

  • eng