Autophagy inhibitor Vacuolin-1 interferes with lipid-based small interference RNA delivery.

Journal Article (Journal Article)

Autophagy and endocytosis are important pathways regulating macromolecule recycling and regeneration. Small molecule inhibitors are utilized to modulate these pathways and to treat autophagy-related diseases. Vacuolin-1 is a small molecule that can potently and reversibly inhibit autophagy by activating Rab5. In addition, Vacuolin-1 can be applied to inhibit exocytosis in a variety of cell types. Here we report that Vacuolin-1 significantly reduces small interference RNA (siRNA)-mediated gene silencing delivered by liposome transfection reagent or lipid nanoparticles in Hela cells. Vacuolin-1 exhibits the strongest inhibition effect among a few autophagy inhibitors including Chloroquine, Wortmannin, and Bafilomycin A1. We found that siRNAs are over-accumulated intracellularly and colocalized with a late endosome marker Rab7 in Vacuolin-1 treated cells, suggesting Vacuolin-1 inhibits the cytoplasmic release of lipid siRNA complexes from late endosomes. We propose that Vacuolin-1 could potentially be used to control the effects of lipid nanoparticle-based RNAi and gene therapy drugs.

Full Text

Duke Authors

Cited Authors

  • Li, T; Yue, J; Huang, L; Yang, M

Published Date

  • March 2019

Published In

Volume / Issue

  • 510 / 3

Start / End Page

  • 427 - 434

PubMed ID

  • 30732855

Electronic International Standard Serial Number (EISSN)

  • 1090-2104

International Standard Serial Number (ISSN)

  • 0006-291X

Digital Object Identifier (DOI)

  • 10.1016/j.bbrc.2019.01.121


  • eng