Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials.

Journal Article (Review;Journal Article)

Intranasal vaccines offer key advantages over traditional needle-based vaccines. They are simple to administer and painless and establish local immunity at mucosal surfaces. Owing to these advantages, they are particularly attractive for use in resource-limited locations of the world. Subunit vaccines also have advantages for global distribution, as they can be engineered to be more stable to fluctuations in environmental conditions than live-attenuated or inactivated vaccines, but they tend to be poorly immunogenic intranasally. Toward realizing the potential of intranasal subunit vaccination, biomaterial-based technologies are emerging. This review provides an overview of recent progress in the preclinical development of biomaterial-based intranasal vaccines against subunit antigens and should serve as an effective introduction to the current state of this exciting field. We provide a brief overview of the obstacles facing intranasal vaccine development and identify key design criteria for consideration when designing biomaterials for intranasal subunit vaccine delivery. Promising strategies are discussed across a wide array of biomaterial classes, with a focus on selected exemplary works that highlight the considerable potential of intranasal vaccines and the biomaterial-based technologies that enable them.

Full Text

Duke Authors

Cited Authors

  • Cossette, B; Kelly, SH; Collier, JH

Published Date

  • May 1, 2021

Published In

Volume / Issue

  • 7 / 5

Start / End Page

  • 1765 - 1779

PubMed ID

  • 33326740

Electronic International Standard Serial Number (EISSN)

  • 2373-9878

International Standard Serial Number (ISSN)

  • 2373-9878

Digital Object Identifier (DOI)

  • 10.1021/acsbiomaterials.0c01291

Language

  • eng