Clinical Implementation of Dual-Energy CT for Gastrointestinal Imaging.

Journal Article (Journal Article;Review)

Dual-energy CT (DECT) overcomes several limitations of conventional single-energy CT (SECT) for the evaluation of gastrointestinal diseases. This article provides an overview of practical aspects of the DECT technology and acquisition protocols, reviews existing clinical applications, discusses current challenges, and describes future directions, with a focus on gastrointestinal imaging. A head-to-head comparison of technical specifications among DECT scanner implementations is provided. Energy- and material-specific DECT image reconstructions enable retrospective (i.e., after examination acquisition) image quality adjustments that are not possible using SECT. Such adjustments may, for example, correct insufficient contrast bolus or metal artifacts, thereby potentially avoiding patient recalls. A combination of low-energy monochromatic images, iodine maps, and virtual unenhanced images can be included in protocols to improve lesion detection and disease characterization. Relevant literature is reviewed regarding use of DECT for evaluation of the liver, gallbladder, pancreas, and bowel. Challenges involving cost, workflow, body habitus, and variability in DECT measurements are considered. Artificial intelligence and machine-learning image reconstruction algorithms, PACS integration, photon-counting hardware, and novel contrast agents are expected to expand the multienergy capability of DECT and further augment its value.

Full Text

Duke Authors

Cited Authors

  • Mileto, A; Ananthakrishnan, L; Morgan, DE; Yeh, BM; Marin, D; Kambadakone, AR

Published Date

  • September 2021

Published In

Volume / Issue

  • 217 / 3

Start / End Page

  • 651 - 663

PubMed ID

  • 33377415

Electronic International Standard Serial Number (EISSN)

  • 1546-3141

Digital Object Identifier (DOI)

  • 10.2214/AJR.20.25093


  • eng

Conference Location

  • United States