Recycling Intermediate Steps to Improve Hamiltonian Monte Carlo
Journal Article (Journal Article)
Hamiltonian Monte Carlo (HMC) and related algorithms have become routinely used in Bayesian computation. In this article, we present a simple and provably accurate method to improve the efficiency of HMC and related algorithms with essentially no extra computational cost. This is achieved by recycling the intermediate states along simulated trajectories of Hamiltonian dynamics. Standard algorithms use only the end points of trajectories, wastefully discarding all the intermediate states. Compared to the alternative methods for utilizing the intermediate states, our algorithm is simpler to apply in practice and requires little programming effort beyond the usual implementations of HMC and related algorithms. Our algorithm applies straightforwardly to the no-U-turn sampler, arguably the most popular variant of HMC. Through a variety of experiments, we demonstrate that our recycling algorithm yields substantial computational efficiency gains.
Full Text
Duke Authors
Cited Authors
- Nishimura, A; Dunson, D
Published Date
- January 1, 2020
Published In
Volume / Issue
- 15 / 4
Start / End Page
- 1087 - 1108
Electronic International Standard Serial Number (EISSN)
- 1931-6690
International Standard Serial Number (ISSN)
- 1936-0975
Digital Object Identifier (DOI)
- 10.1214/19-BA1171
Citation Source
- Scopus