Quasiclassical simulations based on cluster models reveal vibration-facilitated roaming in the isomerization of CO adsorbed on NaCl.

Journal Article (Journal Article)

The desire to better understand the quantum nature of isomerization led to recent experimental observations of the vibrationally induced isomerization of OC-NaCl(100) to CO-NaCl(100). To investigate the mechanism of this isomerization, we performed dynamics calculations using finite (CO-NaCl)n cluster models. We constructed new potential energy surfaces for CO-NaCl and CO-CO interactions using high-level ab initio data and report key properties of the bare CO-NaCl potential energy surface, which show much in common with the experiment. We investigated the isomerization dynamics using several cluster models and, in all cases, isomerization was seen for highly excited CO vibrational states, in agreement with experiments. A detailed examination of the reaction trajectories indicates that isomerization occurs when the distance between CO and NaCl is larger than the distance at the conventional isomerization saddle point, which is a strong indicator of 'roaming'.

Full Text

Duke Authors

Cited Authors

  • Nandi, A; Zhang, P; Chen, J; Guo, H; Bowman, JM

Published Date

  • March 2021

Published In

Volume / Issue

  • 13 / 3

Start / End Page

  • 249 - 254

PubMed ID

  • 33462381

Electronic International Standard Serial Number (EISSN)

  • 1755-4349

International Standard Serial Number (ISSN)

  • 1755-4330

Digital Object Identifier (DOI)

  • 10.1038/s41557-020-00612-y


  • eng