Phylogenetic diversity of 200+ isolates of the ectomycorrhizal fungus Cenococcum geophilum associated with Populus trichocarpa soils in the Pacific Northwest, USA and comparison to globally distributed representatives.

Journal Article (Journal Article)

The ectomycorrhizal fungal symbiont Cenococcum geophilum is of high interest as it is globally distributed, associates with many plant species, and has resistance to multiple environmental stressors. C. geophilum is only known from asexual states but is often considered a cryptic species complex, since extreme phylogenetic divergence is often observed within nearly morphologically identical strains. Alternatively, C. geophilum may represent a highly diverse single species, which would suggest cryptic but frequent recombination. Here we describe a new isolate collection of 229 C. geophilum isolates from soils under Populus trichocarpa at 123 collection sites spanning a ~283 mile north-south transect in Western Washington and Oregon, USA (PNW). To further understanding of the phylogenetic relationships within C. geophilum, we performed maximum likelihood and Bayesian phylogenetic analyses to assess divergence within the PNW isolate collection, as well as a global phylogenetic analysis of 789 isolates with publicly available data from the United States, Japan, and European countries. Phylogenetic analyses of the PNW isolates revealed three distinct phylogenetic groups, with 15 clades that strongly resolved at >80% bootstrap support based on a GAPDH phylogeny and one clade segregating strongly in two principle component analyses. The abundance and representation of PNW isolate clades varied greatly across the North-South range, including a monophyletic group of isolates that spanned nearly the entire gradient at ~250 miles. A direct comparison between the GAPDH and ITS rRNA gene region phylogenies, combined with additional analyses revealed stark incongruence between the ITS and GAPDH gene regions, consistent with intra-species recombination between PNW isolates. In the global isolate collection phylogeny, 34 clades were strongly resolved using Maximum Likelihood and Bayesian approaches (at >80% MLBS and >0.90 BPP respectively), with some clades having intra- and intercontinental distributions. Together these data are highly suggestive of divergence within multiple cryptic species, however additional analyses such as higher resolution genotype-by-sequencing approaches are needed to distinguish potential species boundaries and the mode and tempo of recombination patterns.

Full Text

Duke Authors

Cited Authors

  • Vélez, JM; Morris, RM; Vilgalys, R; Labbé, J; Schadt, CW

Published Date

  • January 6, 2021

Published In

Volume / Issue

  • 16 / 1

Start / End Page

  • e0231367 -

PubMed ID

  • 33406078

Pubmed Central ID

  • PMC7787446

Electronic International Standard Serial Number (EISSN)

  • 1932-6203

International Standard Serial Number (ISSN)

  • 1932-6203

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0231367

Language

  • eng