Role of Catalyst Preparation on the Electrocatalytic Activity of Ni1-xFexOOH for the Oxygen Evolution Reaction

Journal Article (Journal Article)

Ni Fe OOH thin films prepared via cathodic electrodeposition have been demonstrated to be highly active catalysts for the oxygen evolution reaction (OER) in basic media. Integration of these catalysts with light-absorbing semiconductors is required for photoelectrochemical fuel generation. However, the application of cathodic potentials required for typical electrochemical catalyst deposition limits the library of compatible photoanode materials. Sputter deposition of catalysts circumvents this limitation by enabling facile catalyst layering without cathodic potentials. In this work, we compare the structure and OER activity of sputter-deposited and electrodeposited Ni Fe OOH thin films. Electrochemical cycling converts sputtered Ni Fe metallic films to the desired oxides/(oxy)hydroxides. Both film preparation methods give catalysts with similar electrochemical behavior across all compositions. Additionally, OER activity is comparable between the deposition methods, with maximum activity for films with ∼20% Fe content (320 mV overpotential at j = 10 mA cm geometric). Electrochemical cycling to convert sputtered metallic Ni Fe films to metal oxides/(oxy)hydroxides is found to lower the Fe/Ni ratio, while the electrodeposited films exhibit comparable Fe/Ni ratios before and after electrochemical cycling and characterization. Structurally, Fe is found to incorporate within the Ni(OH) /NiOOH lattice for films formed through both sputter-deposition and electrodeposition. Layered films were also compared to codeposited 1:1 Fe/Ni films. It is found that, for layered films, an Fe top layer inhibits the electrochemical conversion of metallic Ni to Ni(OH) /NiOOH, thus reducing the amount of Ni Fe OOH OER-active phase formed. In contrast, migration of metals within Ni-on-top films occurs readily during electrochemical cycling, resulting in films that are structurally and electrochemically indistinguishable from codeposited Ni Fe OOH. These findings enable direct application of Ni Fe OOH sputtered films to a wider library of photoanodes for light-driven water-splitting applications. 1-x x 1-x x 1-x x 1-x x 2 2 1-x x 1-x x 1-x x -2

Full Text

Duke Authors

Cited Authors

  • Klaus, S; Louie, MW; Trotochaud, L; Bell, AT

Published Date

  • July 19, 2015

Published In

Volume / Issue

  • 119 / 32

Start / End Page

  • 18303 - 18316

Electronic International Standard Serial Number (EISSN)

  • 1932-7455

International Standard Serial Number (ISSN)

  • 1932-7447

Digital Object Identifier (DOI)

  • 10.1021/acs.jpcc.5b04776

Citation Source

  • Scopus