Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel
Journal cover image

Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi.

Publication ,  Journal Article
Lofgren, LA; Nguyen, NH; Vilgalys, R; Ruytinx, J; Liao, H-L; Branco, S; Kuo, A; LaButti, K; Lipzen, A; Andreopoulos, W; Pangilinan, J; Na, H ...
Published in: The New phytologist
April 2021

While there has been significant progress characterizing the 'symbiotic toolkit' of ectomycorrhizal (ECM) fungi, how host specificity may be encoded into ECM fungal genomes remains poorly understood. We conducted a comparative genomic analysis of ECM fungal host specialists and generalists, focusing on the specialist genus Suillus. Global analyses of genome dynamics across 46 species were assessed, along with targeted analyses of three classes of molecules previously identified as important determinants of host specificity: small secreted proteins (SSPs), secondary metabolites (SMs) and G-protein coupled receptors (GPCRs). Relative to other ECM fungi, including other host specialists, Suillus had highly dynamic genomes including numerous rapidly evolving gene families and many domain expansions and contractions. Targeted analyses supported a role for SMs but not SSPs or GPCRs in Suillus host specificity. Phylogenomic-based ancestral state reconstruction identified Larix as the ancestral host of Suillus, with multiple independent switches between white and red pine hosts. These results suggest that like other defining characteristics of the ECM lifestyle, host specificity is a dynamic process at the genome level. In the case of Suillus, both SMs and pathways involved in the deactivation of reactive oxygen species appear to be strongly associated with enhanced host specificity.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

The New phytologist

DOI

EISSN

1469-8137

ISSN

1469-8137

Publication Date

April 2021

Volume

230

Issue

2

Start / End Page

774 / 792

Related Subject Headings

  • Specialization
  • Plant Biology & Botany
  • Pinus
  • Mycorrhizae
  • Genomics
  • Genome, Fungal
  • Fungi
  • Evolution, Molecular
  • 4102 Ecological applications
  • 4101 Climate change impacts and adaptation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lofgren, L. A., Nguyen, N. H., Vilgalys, R., Ruytinx, J., Liao, H.-L., Branco, S., … Kennedy, P. G. (2021). Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. The New Phytologist, 230(2), 774–792. https://doi.org/10.1111/nph.17160
Lofgren, Lotus A., Nhu H. Nguyen, Rytas Vilgalys, Joske Ruytinx, Hui-Ling Liao, Sara Branco, Alan Kuo, et al. “Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi.The New Phytologist 230, no. 2 (April 2021): 774–92. https://doi.org/10.1111/nph.17160.
Lofgren LA, Nguyen NH, Vilgalys R, Ruytinx J, Liao H-L, Branco S, et al. Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. The New phytologist. 2021 Apr;230(2):774–92.
Lofgren, Lotus A., et al. “Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi.The New Phytologist, vol. 230, no. 2, Apr. 2021, pp. 774–92. Epmc, doi:10.1111/nph.17160.
Lofgren LA, Nguyen NH, Vilgalys R, Ruytinx J, Liao H-L, Branco S, Kuo A, LaButti K, Lipzen A, Andreopoulos W, Pangilinan J, Riley R, Hundley H, Na H, Barry K, Grigoriev IV, Stajich JE, Kennedy PG. Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. The New phytologist. 2021 Apr;230(2):774–792.
Journal cover image

Published In

The New phytologist

DOI

EISSN

1469-8137

ISSN

1469-8137

Publication Date

April 2021

Volume

230

Issue

2

Start / End Page

774 / 792

Related Subject Headings

  • Specialization
  • Plant Biology & Botany
  • Pinus
  • Mycorrhizae
  • Genomics
  • Genome, Fungal
  • Fungi
  • Evolution, Molecular
  • 4102 Ecological applications
  • 4101 Climate change impacts and adaptation