Physiologic and biochemical rationale for treating COVID-19 patients with hyperbaric oxygen.

Journal Article (Journal Article;Review)

The SARS-Cov-2 (COVID-19) pandemic remains a major worldwide public health issue. Initially, improved supportive and anti-inflammatory intervention, often employing known drugs or technologies, provided measurable improvement in management. We have recently seen advances in specific therapeutic interventions and in vaccines. Nevertheless, it will be months before most of the world's population can be vaccinated to achieve herd immunity. In the interim, hyperbaric oxygen (HBO2) treatment offers several potentially beneficial therapeutic effects. Three small published series, one with a propensity-score-matched control group, have demonstrated safety and initial efficacy. Additional anecdotal reports are consistent with these publications. HBO2 delivers oxygen in extreme conditions of hypoxemia and tissue hypoxia, even in the presence of lung pathology. It provides anti-inflammatory and anti-proinflammatory effects likely to ameliorate the overexuberant immune response common to COVID-19. Unlike steroids, it exerts these effects without immune suppression. One study suggests HBO2 may reduce the hypercoagulability seen in COVID patients. Also, hyperbaric oxygen offers a likely successful intervention to address the oxygen debt expected to arise from a prolonged period of hypoxemia and tissue hypoxia. To date, 11 studies designed to investigate the impact of HBO2 on patients infected with SARS-Cov-2 have been posted on clinicaltrials.gov. This paper describes the promising physiologic and biochemical effects of hyperbaric oxygen in COVID-19 and potentially in other disorders with similar pathologic mechanisms.

Full Text

Duke Authors

Cited Authors

  • Feldmeier, JJ; Kirby, JP; Buckey, JC; Denham, DW; Evangelista, JS; Gelly, HB; Harlan, NP; Mirza, ZK; Ray, KL; Robins, M; Savaser, DJ; Wainwright, S; Bird, N; Huang, ET; Moon, RE; Thom, SR; Weaver, LK

Published In

Volume / Issue

  • 48 / 1

Start / End Page

  • 1 - 12

PubMed ID

  • 33648028

International Standard Serial Number (ISSN)

  • 1066-2936

Language

  • eng

Conference Location

  • United States