Bone marrow-derived AXL tyrosine kinase promotes mitogenic crosstalk and cardiac allograft vasculopathy.

Journal Article (Journal Article)

Cardiac Allograft Vasculopathy (CAV) is a leading contributor to late transplant rejection. Although implicated, the mechanisms by which bone marrow-derived cells promote CAV remain unclear. Emerging evidence implicates the cell surface receptor tyrosine kinase AXL to be elevated in rejecting human allografts. AXL protein is found on multiple cell types, including bone marrow-derived myeloid cells. The causal role of AXL from this compartment and during transplant is largely unknown. This is important because AXL is a key regulator of myeloid inflammation. Utilizing experimental chimeras deficient in the bone marrow-derived Axl gene, we report that Axl antagonizes cardiac allograft survival and promotes CAV. Flow cytometric and histologic analyses of Axl-deficient transplant recipients revealed reductions in both allograft immune cell accumulation and vascular intimal thickness. Co-culture experiments designed to identify cell-intrinsic functions of Axl uncovered complementary cell-proliferative pathways by which Axl promotes CAV-associated inflammation. Specifically, Axl-deficient myeloid cells were less efficient at increasing the replication of both antigen-specific T cells and vascular smooth muscle cells (VSMCs), the latter a key hallmark of CAV. For the latter, we discovered that Axl-was required to amass the VSMC mitogen Platelet-Derived Growth Factor. Taken together, our studies reveal a new role for myeloid Axl in the progression of CAV and mitogenic crosstalk. Inhibition of AXL-protein, in combination with current standards of care, is a candidate strategy to prolong cardiac allograft survival.

Full Text

Duke Authors

Cited Authors

  • Glinton, K; DeBerge, M; Fisher, E; Schroth, S; Sinha, A; Wang, J-J; Wasserstrom, JA; Ansari, MJ; Zhang, ZJ; Feinstein, M; Leventhal, JR; Forbess, JM; Lomasney, J; Luo, X; Thorp, EB

Published Date

  • June 2021

Published In

Volume / Issue

  • 40 / 6

Start / End Page

  • 435 - 446

PubMed ID

  • 33846079

Pubmed Central ID

  • PMC8169599

Electronic International Standard Serial Number (EISSN)

  • 1557-3117

Digital Object Identifier (DOI)

  • 10.1016/j.healun.2021.03.006


  • eng

Conference Location

  • United States