Developments in solution-state NMR yield broader and deeper views of the dynamic ensembles of nucleic acids.

Journal Article (Journal Article;Review)

Nucleic acids do not fold into a single conformation, and dynamic ensembles are needed to describe their propensities to cycle between different conformations when performing cellular functions. We review recent advances in solution-state nuclear magnetic resonance (NMR) methods and their integration with computational techniques that are improving the ability to probe the dynamic ensembles of DNA and RNA. These include computational approaches for predicting chemical shifts from structure and generating conformational libraries from sequence, measurements of exact nuclear Overhauser effects, development of new probes to study chemical exchange using relaxation dispersion, faster and more sensitive real-time NMR techniques, and new NMR approaches to tackle large nucleic acid assemblies. We discuss how these advances are leading to new mechanistic insights into gene expression and regulation.

Full Text

Duke Authors

Cited Authors

  • Liu, B; Shi, H; Al-Hashimi, HM

Published Date

  • April 6, 2021

Published In

Volume / Issue

  • 70 /

Start / End Page

  • 16 - 25

PubMed ID

  • 33836446

Electronic International Standard Serial Number (EISSN)

  • 1879-033X

Digital Object Identifier (DOI)

  • 10.1016/j.sbi.2021.02.007

Language

  • eng

Conference Location

  • England