Microfabrication, coil characterization, and hermetic packaging of millimeter-sized free-floating neural probes

Journal Article (Journal Article)

This paper presents a new micromachining (MEMS) fabrication, microassembly, and hermetic packaging process for free-floating neural probes (<1 mm3). It offers an intuitive probe assembly and a robust design against mechanical and material failures. A key component of the pushpin neural probe is a 1.3×1.3 mm2 bath-tub shaped micromachined silicon die, which serves as a substrate that supports all passive components in non-plated through-silicon cavities (TSCs) plus four φ 81μm tungsten electrodes embedded in φ100μm non-plated through-silicon holes (TSHs), and a 6-turns bonding wire wound coil (WWC) around the die. The current passive probe prototype houses a 1.2×1.2 mm2 mock-up integrated circuit (IC) in a bath-tub cavity created in the passive micromachined die. The probe is hermetically sealed with a 5μm thick parylene-C film except for the tip of the electrodes, and covered with an additional layer of polydimethylsiloxane (PDMS) for physical protection and reduction of mechanical mismatch with brain tissue. WWCs around the micromachined silicon die are used for power or data transmission and were electrically characterized by theoretical analysis, simulation, and measurements in air and lossy tissue medium. This way, the impact of the inner silicon substrate, packaging, and surrounding tissue on the inductance (Ls) and Q-factor (Qs) of the WWC are studied and related to the resonance frequency (f0) and power transmission efficiency (PTE). The lifetime of the current probe prototypes is estimated by using a customized wireless hermetic failure monitoring tool under an accelerated condition (1 atm, 100% RH, and 80 °C).

Full Text

Duke Authors

Cited Authors

  • Yeon, P; Rajan, SK; Falcone, J; Gonzalez, JL; May, GS; Bellamkonda, RV; Brand, O; Bakir, MS; Ghovanloo, M

Published Date

  • June 15, 2021

Published In

Volume / Issue

  • 21 / 12

Start / End Page

  • 13837 - 13848

Electronic International Standard Serial Number (EISSN)

  • 1558-1748

International Standard Serial Number (ISSN)

  • 1530-437X

Digital Object Identifier (DOI)

  • 10.1109/JSEN.2021.3068077

Citation Source

  • Scopus