Comparison of PSGL-1 microbead and neutrophil rolling: microvillus elongation stabilizes P-selectin bond clusters.

Journal Article (Journal Article)

A cell-scaled microbead system was used to analyze the force-dependent kinetics of P-selectin adhesive bonds independent of micromechanical properties of the neutrophil's surface microvilli, an elastic structure on which P-selectin ligand glycoprotein-1 (PSGL-1) is localized. Microvillus extension has been hypothesized in contributing to the dynamic range of leukocyte rolling observed in vivo during inflammatory processes. To evaluate PSGL-1/P-selectin bond kinetics of microbeads and neutrophils, rolling and tethering on P-selectin-coated substrates were compared in a parallel-plate flow chamber. The dissociation rates for PSGL-1 microbeads on P-selectin were briefer than those of neutrophils for any wall shear stress, and increased more rapidly with increasing flow. The microvillus length necessary to reconcile dissociation constants of PSGL-1 microbeads and neutrophils on P-selectin was 0.21 microm at 0.4 dyn/cm2, and increased to 1.58 microm at 2 dyn/cm2. The apparent elastic spring constant of the microvillus ranged from 1340 to 152 pN/microm at 0.4 and 2.0 dyn/cm2 wall shear stress. Scanning electron micrographs of neutrophils rolling on P-selectin confirmed the existence of micrometer-scaled tethers. Fixation of neutrophils to abrogate microvillus elasticity resulted in rolling behavior similar to PSGL-1 microbeads. Our results suggest that microvillus extension during transient PSGL-1/P-selectin bonding may enhance the robustness of neutrophil rolling interactions.

Full Text

Duke Authors

Cited Authors

  • Park, EYH; Smith, MJ; Stropp, ES; Snapp, KR; DiVietro, JA; Walker, WF; Schmidtke, DW; Diamond, SL; Lawrence, MB

Published Date

  • April 2002

Published In

Volume / Issue

  • 82 / 4

Start / End Page

  • 1835 - 1847

PubMed ID

  • 11916843

Pubmed Central ID

  • PMC1301981

Electronic International Standard Serial Number (EISSN)

  • 1542-0086

International Standard Serial Number (ISSN)

  • 0006-3495

Digital Object Identifier (DOI)

  • 10.1016/s0006-3495(02)75534-3


  • eng