Skip to main content

Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas.

Publication ,  Journal Article
Blocker, SJ; Cook, J; Mowery, YM; Everitt, JI; Qi, Y; Hornburg, KJ; Cofer, GP; Zapata, F; Bassil, AM; Badea, CT; Kirsch, DG; Johnson, GA
Published in: Radiol Imaging Cancer
May 2021

Purpose To establish a platform for quantitative tissue-based interpretation of cytoarchitecture features from tumor MRI measurements. Materials and Methods In a pilot preclinical study, multicontrast in vivo MRI of murine soft-tissue sarcomas in 10 mice, followed by ex vivo MRI of fixed tissues (termed MR histology), was performed. Paraffin-embedded limb cross-sections were stained with hematoxylin-eosin, digitized, and registered with MRI. Registration was assessed by using binarized tumor maps and Dice similarity coefficients (DSCs). Quantitative cytometric feature maps from histologic slides were derived by using nuclear segmentation and compared with registered MRI, including apparent diffusion coefficients and transverse relaxation times as affected by magnetic field heterogeneity (T2* maps). Cytometric features were compared with each MR image individually by using simple linear regression analysis to identify the features of interest, and the goodness of fit was assessed on the basis of R2 values. Results Registration of MR images to histopathologic slide images resulted in mean DSCs of 0.912 for ex vivo MR histology and 0.881 for in vivo MRI. Triplicate repeats showed high registration repeatability (mean DSC, >0.9). Whole-slide nuclear segmentations were automated to detect nuclei on histopathologic slides (DSC = 0.8), and feature maps were generated for correlative analysis with MR images. Notable trends were observed between cell density and in vivo apparent diffusion coefficients (best line fit: R2 = 0.96, P < .001). Multiple cytoarchitectural features exhibited linear relationships with in vivo T2* maps, including nuclear circularity (best line fit: R2 = 0.99, P < .001) and variance in nuclear circularity (best line fit: R2 = 0.98, P < .001). Conclusion An infrastructure for registering and quantitatively comparing in vivo tumor MRI with traditional histologic analysis was successfully implemented in a preclinical pilot study of soft-tissue sarcomas. Keywords: MRI, Pathology, Animal Studies, Tissue Characterization Supplemental material is available for this article. © RSNA, 2021.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Radiol Imaging Cancer

DOI

EISSN

2638-616X

Publication Date

May 2021

Volume

3

Issue

3

Start / End Page

e200103

Location

United States

Related Subject Headings

  • Sarcoma
  • Pilot Projects
  • Mice
  • Magnetic Resonance Imaging
  • Imaging, Three-Dimensional
  • Histological Techniques
  • Animals
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Blocker, S. J., Cook, J., Mowery, Y. M., Everitt, J. I., Qi, Y., Hornburg, K. J., … Johnson, G. A. (2021). Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas. Radiol Imaging Cancer, 3(3), e200103. https://doi.org/10.1148/rycan.2021200103
Blocker, Stephanie J., James Cook, Yvonne M. Mowery, Jeffrey I. Everitt, Yi Qi, Kathryn J. Hornburg, Gary P. Cofer, et al. “Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas.Radiol Imaging Cancer 3, no. 3 (May 2021): e200103. https://doi.org/10.1148/rycan.2021200103.
Blocker SJ, Cook J, Mowery YM, Everitt JI, Qi Y, Hornburg KJ, et al. Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas. Radiol Imaging Cancer. 2021 May;3(3):e200103.
Blocker, Stephanie J., et al. “Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas.Radiol Imaging Cancer, vol. 3, no. 3, May 2021, p. e200103. Pubmed, doi:10.1148/rycan.2021200103.
Blocker SJ, Cook J, Mowery YM, Everitt JI, Qi Y, Hornburg KJ, Cofer GP, Zapata F, Bassil AM, Badea CT, Kirsch DG, Johnson GA. Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas. Radiol Imaging Cancer. 2021 May;3(3):e200103.

Published In

Radiol Imaging Cancer

DOI

EISSN

2638-616X

Publication Date

May 2021

Volume

3

Issue

3

Start / End Page

e200103

Location

United States

Related Subject Headings

  • Sarcoma
  • Pilot Projects
  • Mice
  • Magnetic Resonance Imaging
  • Imaging, Three-Dimensional
  • Histological Techniques
  • Animals