Multisite multivendor validation of a quantitative MRI and CT compatible fat phantom.

Journal Article (Journal Article)

PURPOSE: Chemical shift-encoded magnetic resonance imaging enables accurate quantification of liver fat content though estimation of proton density fat-fraction (PDFF). Computed tomography (CT) is capable of quantifying fat, based on decreased attenuation with increased fat concentration. Current quantitative fat phantoms do not accurately mimic the CT number of human liver. The purpose of this work was to develop and validate an optimized phantom that simultaneously mimics the MRI and CT signals of fatty liver. METHODS: An agar-based phantom containing 12 vials doped with iodinated contrast, and with a granular range of fat fractions was designed and constructed within a novel CT and MR compatible spherical housing design. A four-site, three-vendor validation study was performed. MRI (1.5T and 3T) and CT images were obtained using each vendor's PDFF and CT reconstruction, respectively. An ROI centered in each vial was placed to measure MRI-PDFF (%) and CT number (HU). Mixed-effects model, linear regression, and Bland-Altman analysis were used for statistical analysis. RESULTS: MRI-PDFF agreed closely with nominal PDFF values across both field strengths and all MRI vendors. A linear relationship (slope = -0.54 ± 0.01%/HU, intercept = 37.15 ± 0.03%) with an R2 of 0.999 was observed between MRI-PDFF and CT number, replicating established in vivo signal behavior. Excellent test-retest repeatability across vendors (MRI: mean = -0.04%, 95% limits of agreement = [-0.24%, 0.16%]; CT: mean = 0.16 HU, 95% limits of agreement = [-0.15HU, 0.47HU]) and good reproducibility using GE scanners (MRI: mean = -0.21%, 95% limits of agreement = [-1.47%, 1.06%]; CT: mean = -0.18HU, 95% limits of agreement = [-1.96HU, 1.6HU]) were demonstrated. CONCLUSIONS: The proposed fat phantom successfully mimicked quantitative liver signal for both MRI and CT. The proposed fat phantom in this study may facilitate broader application and harmonization of liver fat quantification techniques using MRI and CT across institutions, vendors and imaging platforms.

Full Text

Duke Authors

Cited Authors

  • Zhao, R; Hernando, D; Harris, DT; Hinshaw, LA; Li, K; Ananthakrishnan, L; Bashir, MR; Duan, X; Ghasabeh, MA; Kamel, IR; Lowry, C; Mahesh, M; Marin, D; Miller, J; Pickhardt, PJ; Shaffer, J; Yokoo, T; Brittain, JH; Reeder, SB

Published Date

  • August 2021

Published In

Volume / Issue

  • 48 / 8

Start / End Page

  • 4375 - 4386

PubMed ID

  • 34105167

Pubmed Central ID

  • PMC8859818

Electronic International Standard Serial Number (EISSN)

  • 2473-4209

Digital Object Identifier (DOI)

  • 10.1002/mp.15038

Language

  • eng

Conference Location

  • United States