Gallium Plasmonic Nanoantennas Unveiling Multiple Kinetics of Hydrogen Sensing, Storage, and Spillover.

Journal Article (Journal Article)

Hydrogen is the key element to accomplish a carbon-free based economy. Here, the first evidence of plasmonic gallium (Ga) nanoantennas is provided as nanoreactors supported on sapphire (α-Al2 O3 ) acting as direct plasmon-enhanced photocatalyst for hydrogen sensing, storage, and spillover. The role of plasmon-catalyzed electron transfer between hydrogen and plasmonic Ga nanoparticle in the activation of those processes is highlighted, as opposed to conventional refractive index-change-based sensing. This study reveals that, while temperature selectively operates those various processes, longitudinal (LO-LSPR) and transverse (TO-LSPR) localized surface plasmon resonances of supported Ga nanoparticles open selectivity of localized reaction pathways at specific sites corresponding to the electromagnetic hot-spots. Specifically, the TO-LSPR couples light into the surface dissociative adsorption of hydrogen and formation of hydrides, whereas the LO-LSPR activates heterogeneous reactions at the interface with the support, that is, hydrogen spillover into α-Al2 O3 and reverse-oxygen spillover from α-Al2 O3. This Ga-based plasmon-catalytic platform expands the application of supported plasmon-catalysis to hydrogen technologies, including reversible fast hydrogen sensing in a timescale of a few seconds with a limit of detection as low as 5 ppm and in a broad temperature range from room-temperature up to 600 °C while remaining stable and reusable over an extended period of time.

Full Text

Duke Authors

Cited Authors

  • Losurdo, M; Gutiérrez, Y; Suvorova, A; Giangregorio, MM; Rubanov, S; Brown, AS; Moreno, F

Published Date

  • July 2021

Published In

Volume / Issue

  • 33 / 29

Start / End Page

  • e2100500 -

PubMed ID

  • 34076312

Electronic International Standard Serial Number (EISSN)

  • 1521-4095

International Standard Serial Number (ISSN)

  • 0935-9648

Digital Object Identifier (DOI)

  • 10.1002/adma.202100500

Language

  • eng