Structure-property relationships in 3D-printed poly(l-lactide-co-ε-caprolactone) degradable polymer.

Journal Article (Journal Article)

The recent growth of polymer 3D-printing has brought innovation to the medical implant field. Implants with complex porous structures can be fabricated by printing to tune mechanical behavior and enable diffusion, consequently improving integration with tissues in the human body. Poly(L-lactide-co-ε-caprolactone) (PLCL) is a 3D-printable polymer that possess a wide range of possible mechanical properties depending on its monomer composition. It is often used in biomedical applications requiring degradability. In this study, we explore 1) the effect of annealing 3D-printed PLCL and 2) the degradation profile of both annealed and unannealed 3D-printed PLCL scaffolds. The degraded samples were characterized for its molecular weight, mass loss, microstructure, and mechanical properties. By annealing the 3D-printed PLCL, we reveal the structure-property relationship of PLCL. Crystallization was found to be a crucial factor in the resulting mechanical properties, increasing stiffness significantly. The subsequent degradation study revealed that there was no significant difference brought about by pre-annealing the scaffolds. The scaffolds were found to maintain their mechanical properties until up to 8 weeks, at which point the scaffolds reached a critical molecular weight and lost their mechanical integrity.

Full Text

Duke Authors

Cited Authors

  • Bachtiar, EO; Ritter, VC; Gall, K

Published Date

  • September 2021

Published In

Volume / Issue

  • 121 /

Start / End Page

  • 104650 -

PubMed ID

  • 34166872

Electronic International Standard Serial Number (EISSN)

  • 1878-0180

International Standard Serial Number (ISSN)

  • 1751-6161

Digital Object Identifier (DOI)

  • 10.1016/j.jmbbm.2021.104650


  • eng