Knockout of Putative Tumor Suppressor Aldh1l1 in Mice Reprograms Metabolism to Accelerate Growth of Tumors in a Diethylnitrosamine (DEN) Model of Liver Carcinogenesis.

Journal Article (Journal Article)

Cytosolic 10-formyltetrahydrofolate dehydrogenase (ALDH1L1) is commonly downregulated in human cancers through promoter methylation. We proposed that ALDH1L1 loss promotes malignant tumor growth. Here, we investigated the effect of the Aldh1l1 mouse knockout (Aldh1l1-/-) on hepatocellular carcinoma using a chemical carcinogenesis model. Fifteen-day-old male Aldh1l1 knockout mice and their wild-type littermate controls (Aldh1l1+/+) were injected intraperitoneally with 20 μg/g body weight of DEN (diethylnitrosamine). Mice were sacrificed 10, 20, 28, and 36 weeks post-DEN injection, and livers were examined for tumor multiplicity and size. We observed that while tumor multiplicity did not differ between Aldh1l1-/- and Aldh1l1+/+ animals, larger tumors grew in Aldh1l1-/- compared to Aldh1l1+/+ mice at 28 and 36 weeks. Profound differences between Aldh1l1-/- and Aldh1l1+/+ mice in the expression of inflammation-related genes were seen at 10 and 20 weeks. Of note, large tumors from wild-type mice showed a strong decrease of ALDH1L1 protein at 36 weeks. Metabolomic analysis of liver tissues at 20 weeks showed stronger differences in Aldh1l1+/+ versus Aldh1l1-/- metabotypes than at 10 weeks, which underscores metabolic pathways that respond to DEN in an ALDH1L1-dependent manner. Our study indicates that Aldh1l1 knockout promoted liver tumor growth without affecting tumor initiation or multiplicity.

Full Text

Duke Authors

Cited Authors

  • Krupenko, NI; Sharma, J; Fogle, HM; Pediaditakis, P; Strickland, KC; Du, X; Helke, KL; Sumner, S; Krupenko, SA

Published Date

  • June 28, 2021

Published In

Volume / Issue

  • 13 / 13

PubMed ID

  • 34203215

Pubmed Central ID

  • PMC8268287

International Standard Serial Number (ISSN)

  • 2072-6694

Digital Object Identifier (DOI)

  • 10.3390/cancers13133219


  • eng

Conference Location

  • Switzerland